UNIVERSITY OF MUMBAI

Bachelor of Engineering Electronics and Telecommunication Engineering

Third Year Engineering

(Sem. V and Sem. VI), (Rev-2012) effective from Academic Year 2014 -15

Under FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

From Dean's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education. Semester based Credit and Grading System enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3-2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

In the process of change in the curriculum there is a limited scope to have major changes in the fundamental subjects which are mainly part of second year of engineering. The exposure to the latest technology and tools used all over the world is given by properly selecting subjects and their hierarchy in pre-final and final year. Thus this syllabus is made to groom the undergraduate students best suited and competent in all respect with best possible efforts put in by the experts in framing detail contents of individual subjects.

The engineering education in India is expanding in manifolds and the main challenge is the quality education. All the stakeholders are very much concerned about it. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner.

An engineering program must ensure that its graduates understand the basic concepts of science and mathematics have gone through one engineering field and have acquired skills for life-long learning.

An engineering program must therefore have a mission statement which is in conformity with program objectives and program outcomes that are expected of the educational process. The outcomes of a program must be measureable and must be assessed regularly through proper feedback for improvement of the programme. There must be a quality assurance process in place within the institute to make use of the feedback for improvement of the programme. The curriculum must be constantly refined and updated to ensure that the defined objectives and outcomes are achieved. Students must be encouraged to comment on the objectives and outcomes and the role played by the individual courses in achieving them. In line with this Faculty of Technology, University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, the Chairman, Board of Studies in Electronics and Telecommunication Engineering University of Mumbai, am happy to state that, heads of the department and senior faculty from various Institutes took timely and valuable initiative to frame Program Educational Objectives as listed below.

- To provide students with a strong foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.
- To prepare students to demonstrate an ability to identify, formulate and solve electronics and telecommunication engineering problems.
- To prepare students to demonstrate ability to design electrical and electronics systems and conduct experiments, analyze and interpret data.
- To prepare students to demonstrate for successful career in industry to meet needs of Indian and multi-national companies.
- To develop the ability among students to synthesize data and technical concepts from applications to product design.
- To provide opportunity for students to work as part of teams on multidisciplinary projects.
- To promote awareness among students for the life-long learning and to introduce them to professional ethics and codes of professional practice.

These are the suggested and expected main objectives and individual affiliated institute may add further in the list. In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

At the end, I must extend my gratitude to all the experts who contributed to make curriculum competent at par with latest technological development in the field of Electronics and Telecommunication Engineering.

Dr. Udhav Bhosle Chairman, Board of Studies in Electronics and Telecommunication Engineering

SEMESTER VI

Course	Course Name	Teach	ing Scheme	e (Hrs.)		Credits As	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC601	Digital Communication	04			04			04
ETC602	Discrete Time Signal	04			04			04
	Processing							
ETC603	Computer Communication	04			04			04
	and Telecom Networks							
ETC604	Television Engineering	04			04			04
ETC605	Operating Systems	04			04			04
ETC606	VLSI Design	04			04			04
ETL601	Discrete Time Signal		02			01		01
	Processing Laboratory							
ETL602	Communication		02			01		01
	Engineering Laboratory III							
ETL603	Communication		02			01		01
	Engineering Laboratory IV							
ETL604	Mini Project II		02			01		01
Total		24	08		24	04		28

Course	Course Name			I	Examinatio	on Scheme	9		
Code			The	ory Marks		Term	Practical	Oral	Total
		Internal assessment			End	Work	And		
		Test	Test	Ave. of	Sem.		Oral		
		1	2	Test 1 &	Exam				
				Test 2					
ETC601	Digital Communication	20	20	20	80				100
ETC602	Discrete Time Signal	20	20	20	80				100
	Processing								
ETC603	Computer	20	20	20	80				100
	Communication and								
	Telecom Networks								
ETC604	Television Engineering	20	20	20	80				100
ETC605	Operating Systems	20	20	20	80				100
ETC606	VLSI Design	20	20	20	80				100
ETL601	Discrete Time Signal					25	25		50
	Processing Laboratory								
ETL602	Communication					25	25		50
	Engineering Laboratory								
	III								
ETL603	Communication					25	25		50
	Engineering Laboratory								
	IV								
ETL604	Mini Project II					25	25		50
Total		120	120	120	480	100	100		800

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC601	Digital	04			04			04	
	Communication								

Course	Course Name		Examination Scheme								
Code				Theory Mar	ks	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test Test Ave. Of		Exam						
		1	1 2 Test 1								
				and							
				Test 2							
ETC601	Digital	20	20	20	80	-	-	-	100		
	Communication										

Pre-requisite:

- ETC405 Signal and System,
- ETC502 Analog Communication,
- ETC503 Random Signal Analysis

Course Objective:

- Aim is to identify the functions of different components
- Learn about theoretical bounds on the rates of digital communication system and represent a digital signal using several modulation methods
- Draw signal space diagrams, compute spectra of modulated signals and apply redundancy for reliable communication.

Course Outcome: At the end of course, student will be able to :

- Understand the basics of information theory and coding techniques.
- Determine the minimum number of bits per symbol required to represent the source and the maximum rate at which a reliable communication can take place over the channel.
- Describe and determine the performance of different waveform techniques for the generation of digital representation of signals.
- Determine methods to mitigate inter symbol interference in baseband transmission system.
- Describe and determine the performance of different error control coding schemes for the reliable transmission of digital representation of signals and information over the channel.
- Understand various spreading techniques and determine bit error performance of various digital communication systems.

Module		Topics	Hrs.
No.			
1.		Information theory and source coding	6
	1.1	Block diagram and sub-system description of a digital communication system,	
		measure of information and properties, entropy and it's properties	-
	1.2	Source Coding, Shannon's Source Coding Theorem, Shannon-Fano Source Coding,	
		Huffman Source Coding	
	1.3	Differential Entropy, joint and conditional entropy, mutual information and channel	
		capacity, channel coding theorem, channel capacity theorem	
2		Baseband Modulation and Transmission	6
	2.1	Discrete PAM signals and it's power spectra	
	2.2	Inter-symbol interference, Nyquist criterion for zero ISI, sinusoidal roll-off filtering,	
		correlative coding, equalizers, and eye pattern	
3		Base band Detection	5
	3.1	Orthogonality, representation of signals	
	3.2	Maximum likelihood decoding	
	3.3	Correlation receiver, equivalence with matched filter	
4		Bandpass Modulation and Demodulation	12
	4.1	Bandpass digital transmitter and receiver model, digital modulation schemes	
	4.2	Generation, detection, signal space diagram, spectrum, bandwidth efficiency, and	
		probability of error analysis of:	
		Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary	
		Phase Shift Keying (BPSK) Modulation, Quaternary Phase Shift Keying QPSK), M-	
		ary PSK Modulations, Quadrature Amplitude Modulation (QAM), Minimum Shift	
		Keying (MSK)	
	4.3	Comparison between bandwidth and bit rate, applications of digital modulation	
		schemes	10
5		Error Control Systems	10
	5.1	Types of error control, error control codes, linear block codes, vector spaces, vector	
		sub spaces, generator matrix, systematic linear block codes, parity check matrix,	
	5.0	syndrome testing ,error correction, and decoder implementation	
	5.2	Cyclic codes: Algebraic structure of cyclic codes, binary cyclic code properties,	
		encoding in systematic form, circuits for dividing polynomials, systematic encoding	
	5 2	With shift register and error detection	7
	5.3	Convolution Codes: Time domain and transform domain approach, graphical	/
		representation, code tree, trents, state diagram, decoding methods, maximum	
	5.4	Vitarbi decoding, and free distance	-
	5.4	Viterbi decoding, nard decision viterbi decoding, decoding window, soit decision	
		and application areas	
6		Spread Spectrum	6
U	61	Spread Spectrum (SS) concept DN Sequences Direct Sequence(DS) Frequency	U
	0.1	Hopping (FH), and Time Hopping	
	6.2	Comparison of Spread Spectrum Methods, SS Communication System, DSSS with	
		Coherent BPSK, Processing Gain, Probability of Error of FHSS Transmitter and	
		FHSS Receiver	
		Total	52

- 1. Sklar B, and Ray P. K., "*Digital Communication: Fundamentals and applications*," Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 2. Haykin Simon, "Digital Communication Systems," John Wiley and Sons, New Delhi, Forth Edition, 2014.
- 3. H. Taub, D. Schlling, and G. Saha, "*Principles of Communication Systems*," Tata Mc-Graw Hill, New Delhi, Third Edition, 2012.
- 4. Lathi B P, and Ding Z., "*Modern Digital and Analog Communication Systems*," Oxford University Press, Forth Edition, 2009.
- 5. T L Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 6. P Ramakrishna Rao, "Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 7. M F Mesiya, "Contempory Communication systems", Mc-Graw Hill, Singapore, First Edition, 2013.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Те	eaching Sch	eme	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC602	Discrete Time	04			04			04	
	Signal								
	Processing								

Course	Course		Examination Scheme								
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total		
		Int	ernal as	sessment	End Sem.	Work					
		Test 1	Test 2	Ave. Of Test 1 and Test 2	Exam						
ETC602	Discrete Time Signal	20	20	20	80	-	-	-	100		
	Processing										

Course Prerequisite: ETC 405: Signals and System

Course Objectives:

- To develop a thorough understanding of the central elements of discrete time signal processing theory and the ability to apply this theory to real-world signal processing applications.
- Use z-transforms and discrete time Fourier transforms to analyze a digital system.
- Understand the discrete Fourier transform (DFT), its applications and its implementation by FFT techniques.
- Design and understand finite & infinite impulse response filters for various applications.
- The course is a prerequisite course for further studying of other multimedia related courses, such as speech processing, image processing, audio and video data compression, pattern recognition, communication systems and so forth.

Course Outcomes: Student will able to

- Formulate engineering problems in terms of DSP tasks
- Apply engineering problem solving strategies to DSP problems
- Design and test signal processing algorithms for various applications
- Recover information from signals
- Design and simulate digital filters

Module		Topics	Hrs.
1 1		Transform Analysis of Lincon Time Invertiont System	04
1	1 1	Pavian of Z transform and its properties response to sinuscidel and complex	04
	1.1	exponential signals steady state response to periodic input signals response to	
		aperiodic input signals, relationships between the system function and the frequency	
		response function computation of the frequency response function	
	1 2	I TI systems as frequency selective filters like: low pass, high pass, hand pass, notch	-
	1.4	comb all-Pass filters and digital resonators	
	13	Invertibility of LTI systems minimum-phase maximum-phase mixed-phase systems	-
2	1.5	The Discrete Fourier Transform and Efficient Computation	12
4	21	Frequency domain sampling and reconstruction of discrete time signals discrete	14
	2.1	Fourier transform (DFT), DFT as a linear transformation, properties of the DFT, relationship of the DFT to other transforms	
	2.2	Fast Fourier Transform: Radix-2 and split-radix fast Fourier transform (FFT)	-
		algorithms and their applications	
	2.3	Ouantization effects in the computation of the DFT	
3		Design of Digital filters and Implementation	12
_	3.1	Design of Infinite Impulse Response (IIR) filters using impulse invariant method and	
		bilinear transformation method, Butterworth and Chebyshev filter approximation.	
	3.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and anti symmetric FIR	
		filter, FIR filter design using window method and frequency sampling method.	
	3.3	Realization structures for IIR and FIR filters using direct form structures, cascade,	
		parallel structures, and lattice, ladder structure (only conceptual understanding)	
4		Multi rate Signal Processing	08
	4.1	Decimation by a factor D , interpolation by I, sampling rate conversion by a rational	
		factor I/D	
	4.2	Polyphase filter structures, interchange of filers and down samplers/up samplers,	
		sampling rate conversion with cascade integrator comb filters, polyphase structures for	
		decimation and interpolation filters, structures for rational sampling rate conversion	
	4.3	Multistage implementation of sampling rate conversion.	
	4.4	Sampling rate conversion of band pass signals	
	4.5	Sampling rate conversion by an arbitrary factor – arbitrary re-sampling with polyphase	
	1.6	interpolators, narrow band filter structures.	
	4.6	Application of Multirate Signal Processing for design of phase shifters, interfacing of	
		filters, sub-band adding of speech signals	
5		Analysis of Finite Word length offects	08
5	5 1	Analysis of Finite word length effects	Vð
	3.1	floating-point numbers, analysis of coefficient quantization effects	
	52	A/D Conversion Noise Analysis of Coefficient quantization enects	
	5.2	dynamic range scaling	
6		Applications of Digital Signal processing:	08
v	6.1	Dual – Tone multi frequency signal detection, spectral analysis of sinusoidal signals.	00
		spectral analysis of non stationary signals, and spectral analysis of random signals	
	6.2	Musical sound processing, digital music synthesis, discrete time analytic signal]
		generation.	
	6.3	Trans-multiplexers, oversampling ADC and DAC and sparse antenna array design	
		Total	52

- 1. Alan V. Oppenheim and Ronald Schafer, "Discrete Time Signal Processing", Pearson Education
- 2. J. Proakis, D. G. Manolakis, and D. Sharma, "Digital Signal Processing: Principles, Algorithms and Applications", Pearson Education.
- 3. P.P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson.
- 4. Robert Schilling and Sandra Harris, "Fundamentals of Digital Signal Processing using MATLAB", Cengage Learning.
- 5. Sanjit K.Mitra, "Digital Signal Processing", McGrawHill education

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teaching Scheme			Cred	lits Assigne	d	
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
						Practical		
ETC603	Computer	04			04			04
	Communication							
	Networks							

Course	Course Name				Examination	Scheme			
Code			r -	Fheory Mark	S	Term	Practical	Oral	Total
		Int	ernal a	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC603	Computer	20	20	20	80	-	-	-	100
	Communication								
	Networks								

Course pre requisite: ETC 502 Analog Communication

Course Objective:

- To introduce analysis and design of computer and communication networks.
- To understand the network layered architecture and the protocol stack.

Course Outcomes:

Upon completion of the subject, students will be able to:

- Assemble the components of a PC and install one or more network operating systems resulting in a functioning
- Design a small or medium sized computer network including media types, end devices, and interconnecting devices that meets a customer's specific needs.
- Perform basic configurations on routers and Ethernet switches.
- Demonstrate knowledge of programming for network communications
- Learn to simulate computer networks and analyze the simulation results
- Troubleshoot connectivity problems in a host occurring at multiple layers of the OSI model
- Develop knowledge and skills necessary to gain employment as computer network engineer and network administrator.

Module		Topics	Hrs.
1.		Network Architectures, Protocol layers, and their Service Models:	04
	1.1	OSI-RM model and TCP/IP protocol	
2		Principles of Network Applications:	10
	2.1	Application layer protocols such as HTTP, FTP, and SMTP.	
	2.2	Peer-to-Peer File Sharing Protocols and Architectures	
	2.3	ISPs and Domain name systems, Socket API and network socket programming	
3	3.1	Reliable and Unreliable Transport-layer protocols:	10
	3.2	TCP and UDP, Port numbers, Multiplexing and de-multiplexing	
	3.3	Flow control and congestion control. fairness delay, jitter, and loss in packet- switched networks	
	3.4	Bandwidth, throughput, and quality-of-service	
4	4.1	Network layer Services and Protocols	10
	4.2	Switching fabric, routing and forwarding, queues and buffering	
	4.3	Virtual-circuit and datagram networks, internet protocol. IPv4 and IPv6 tunneling	
	4.4	Link State and Distance Vector algorithms, Routing in the Internet RIP, OSPF, and BGP	
	4.5	Broadcast and multicast, handling mobility	
5		Data link layer Services and Protocols:	10
	5.1	Link-layer and its services, Ethernet, hubs, bridges, and switches	
	5.2	Link-layer addressing, ATM and MPLS	
	5.3	Local area networks and IEEE 802.11 wireless LANs, multiple-access protocols.	
		Random access, efficiency of pure and slotted ALOHA, CSMA, CSMA/CD, and	
		CSMA/CA	
6		Introduction to Physical-layer Services and Systems	08
	6.1	Introduction to physical media, Coax, fiber, twisted pair, DSL, HFC, WiMax,	
		cellular, satellite, and telephone networks, bit transmission, frequency division	
		multiplexing. time division multiplexing	
		Total	52

- 1. Andrew Tanenbaum, "Computer Networks", PHI New Dehli,
- 2. Natalia Olifer and Victor Olifer, "Computer Networks", Wiley India, New Delhi
- 3. J. F. Kurose and K. W. Ross, "*Computer Networking: A Top-Down Approach*", Pearson Publication, 5th Edition, March 2009
- 4. L.Garcia et al, "Communication Networks", McGraw Hill Publication, 2nd Edition
- 5. B. Forouzan, "Data Communication and Networking", McGraw Hill Publication, 5th edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3 Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course	Te	aching Sch	eme	Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC 604	Television	04			04			04	
	Engineering								

Course	Course		Examination Scheme									
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total			
		Int	ernal as	ssessment	End Sem.	Work						
		Test	Test	Ave. Of	Exam							
		1	2	Test 1 and								
				Test 2								
ETC	Television	20	20	20	80	-	-	-	100			
604	Engineering											

Pre requisite : ETC 502 Analog Communication

Course Objective:

- To introduce the basics of picture transmission and reception.
- To become well conversant with new development in video engineering.
- To introduce most latest and revolutionary ideas in the field of digital TV, HDTV, WDTV.

Course outcome: The students will be able to

- Describe and differentiate working principles of latest digital TV, HDTV, WDTV.
- Understand, use and working principles of latest display like LCD, LED, Plasma and large plat panel monitors

Module		Topics	Hrs.
1		Fundamentals of Analog T V system	10
-	1.1	Transmitter and receiver- block diagram approach, interlaced scanning, composite	10
		video signal, VSB transmission and reception (CCIR-B standards)	
	1.2	Camera tubes: basic principle, Vidicon and Image orthicon	
2		Color T V	
	2.1	Compatibility considerations, Color theory, chromaticity diagram, generation of color	10
		TV signals, luminance signal, chrominance signal, frequency interleaving process,	
	2.2	Color subcarrier frequency.	
	2.2	INTSC system- transmitter and receiver, PAL system- transmitter and receiver	
2	2 1	Fundamental Concept of Digital video	10
5	3.1	from rote and refresh rote	14
	37	Rester scanning, scan line waveform, interlace, scanning standards	
	3.2	Sync structure data rate linearity handwidth and data rate resolution luma color	
	5.5	difference coding chroma sub sampling	
	3.4	Component digital video, composite video	-
4		Advanced TV systems	6
-	4.1	Digital video and audio signals	Ū
	4.2	MAC signal, D2-MAC/packet signal, MAC decoding and interfacing, advantages of	
	-	MAC signal	
	4.3	Direct-to-home TV(DTH)	
5		High definition televisions	8
	5.1	High definition TV systems, HDTV standards and compatibility, resolution and	
		working.	_
	5.2	Wide dimensions high definition TV	_
	5.3	Standards of wide dimensions HDTV	
	5.4	MUSE system	
6		Displays	6
	6.1	Principle, working, advantages and disadvantages of Plasma, LED,LCD	
		Total	52

- 1. Gulati R.R, "Monochrome and Color Television," Wiley Eastern Limited publication.
- 2. R.G.Gupta, "Television and Video Engineering", Tata Mc Graw Hill publication.
- 3. Dhake A.M, "Television and Video Engineering", Tata McGraw Hill publication.
- 4. Keith Jack, "Video Demystified", 4e, , Elsevier
- 5. Charles Poynton, "San Francisco, Digital video and HDTV, Algorithms And Interfaces," Morgan Kaufmann publishers, 2003.
- 6. Stan Prentiss, "High Definition TV", second edition, , Tata McGraw Hill publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Course Code	Course	Те	aching Sch	eme	Credits Assigned					
	Name	Theory	Practical	ctical Tutorial Theory TW/Practical Tutorial						
ETC 605	Operating	04			04			04		
	System									

Course	Course				Examination S	Scheme	cheme					
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total			
		Int	ernal as	ssessment	End Sem.	Work						
		Test	Test	Ave. Of	Exam							
		1	2	Test 1 and								
				Test 2								
ETC	Operating	20	20	20	80	-	-	-	100			
605	System											

Course Pre-requisite: Basic concepts of computer systems

Course Objectives:

١

- To introduce operating system as a resource manager, its evolutions and fundamentals.
- To help student understand concept of process and different process (linear and concurrent) Scheduling policies.
- To help student familiar with memory, file and I/O management policies.

Course Outcomes: On completing this course Student will able to:

- Understand the role of an operating system, its function and issues.
- Compare between different algorithms used for management and scheduling of processes, Memory and input-output operation.
- Appreciate the role of various productivity enhancing tools.

Module		Topics	Hrs.
NO.		Even downerstal of One and the a Startone (OS)	0(
1	11	Perindiamental of Operating System(OS)	VO
	1.1	Definition, objectives, functions, evolution, services, types, and different views of OS	-
	1.2	Monolithia systems layered systems alient server model monolithic kernel and	-
	1.3	microkernel	
2		Process Management and Memory Management	10
4	21	Process process creation process control block process states process state transition	10
	2.1	diagram	
	2.2	Scheduling queues and schedulers, preemptive and non-preemptive scheduling algorithms.	-
		types of threads, multithreading models	
	2.3	Race condition, critical section, mutual exclusion, semaphores, monitors	
	2.4	Multiprogramming with fixed and variable partitions, memory allocation strategies	-
	2.5	Logical and physical address space, paging and segmentation	-
	2.6	Concept, performance of demand paging, page replacement algorithms.	
	2.7	Deadlock Problem, deadlock characterization, deadlock prevention and deadlock avoidance	1
		deadlock detection and recovery	
3		File Management and Input Output Management	10
	3.1	File Naming, File Structure, File Types, File Access, File Attributes, File Operations,	
		Memory Mapped Files, Implementing Files, contiguous allocation, linked list allocation,	
		indexed allocations, Inode	
	3.2	Single level directory system, Two level directory system, Hierarchical Directory System	
	3.3	Principles of Input/output H/W: I/O Devices, Device Controllers, Direct Memory Access.	
	3.4	Principles of Input/output S/W: Goals Of I/O S/W, Interrupt Handler, Device Driver,	
		Device Independent I/O Software	-
	3.5	Disks : RAID levels, Disks Arm Scheduling Algorithms	-
	3.6	Management of free blocks.	
4		Unix Operating System	-
	4.1	History of UNIX, UNIX Goals, Unix Shell, interfaces to Unix, UNIX utility programs	-
	4.2	Traditional UNIX Kernel, Modern UNIX Systems	06
	4.3	Unix process management: Concept, Scheduling in Unix	-
	4.4	Unix Memory management: Paging, Page replacement strategies	-
	4.5	Unix file management: I-node, File allocation, I/O management	-
5	4.0	Unix Security measures	10
5	51	Linux Operating System History, Linux Processes and Thread management	10
	5.1	Scheduling in Linux Linux System calls	-
	5.2 5.2	Memory management: Virtual memory Buddy Algorithm Dage replacement policy	-
	5.5	Linux File System	-
	5.5	I/O management: Disk Scheduling	-
	5.5	Advantages of Linux and Unix over Windows	
6	5.0	Real Time Operating System(RTOS)	10
	6.1	Introduction. Characteristics of real-time operating systems	10
	6.2	Real Time task Scheduling, Modeling Timing constraints, Table-driven scheduling	-
	6.3	Cvclic schedulers	-
	6.4	Earliest Deadline First (EDF) scheduling	ł
	6.5	Rate Monotonic Algorithm(RMA)	1
		Total	52

- 1. Tanenbaum, "Modern Operating Systems", IIIrd Edition, PHI
- 2. Silberschatz A., Galvin P., and Gagne G, "Operating Systems Concepts", VIIIth Edition Wiley.
- 3. William Stallings, "Operating System-Internal & Design Principles", VIth Edition, , Pearson
- 4. Rajib Mall, "Real-Time Systems: Theory and Practice," Pearson, 2008.
- 5. Maurice J. Bach, "The Design of Unix Operating System", Prentine Hall
- 6. Achyut S. Godbole, "Operating Systems", 2nd edition, Tata McGraw Hill
- 7. Richard Blum and Christine Bresnahan, "Linux Command Line & Shell Scripting", 2nd edition, Wiley

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course	Те	aching Sch	eme	Credits Assigned					
Code	Name	Theory	Practical	Tutorial	Theory TW/Practical Tutorial					
ETC606	VLSI Design	04			04		04			

Course	Course Name		Examination Scheme								
Code				Theory Mar	·ks	Term	Practical	Oral	Total		
		Int	ternal a	ssessment	End Sem.	Work					
		Test	Test	Avg. of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC606	VLSI Design	20	20	20	80				100		

Course Pre-requisite:

- ETC303: Digital Electronics
- ETC302: Analog Electronics-I
- ETC402: Analog Electronics-II
- ETC505: Integrated Circuits

Course Objectives:

- To teach fundamentals of VLSI circuit design and implementation using circuit simulators and layout editors.
- To highlight the circuit design issues in the context of VLSI technology.

Course Outcomes: After successful completion of the course student will be able to

- Demonstrate a clear understanding of CMOS fabrication flow and technology scaling.
- Design MOSFET based logic circuit
- Draw layout of a given logic circuit
- Realize logic circuits with different design styles
- Demonstrate an understanding of working principle of operation of different types of memories
- Demonstrate an understanding of working principles of clocking, power reduction and distribution

Module		Topics	Hrs.
1		MOSFET Fabrication and Scaling	08
	1.1	Fabrication: Fabrication process flow for NMOS and CMOS, CMOS Latch-up	
	1.2	MOSFET Scaling: Types of scaling, short channel effects, Level 1 and Level 2 MOSFET Models	
	1.3	Layout: Lambda based design rules, MOSFET capacitances	
2		MOSFET Inverters	10
	2.1	Circuit Analysis: Static and dynamic analysis (Noise, propagation delay and power	
		dissipation) of resistive load and CMOS inverter. Comparison of all types of MOS	
		Inverters. Design of CMOS inverters and its layout.	
	2.2	equivalent CMOS inverter.	
3		MOS Circuit Design Styles	10
	3.1	Design Styles: Static CMOS, Pass Transistor Logic, Transmission Gate, Pseudo	
		NMOS, Domino, NORA, Zipper, C ² MOS	
	3.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, Decoder	
		using above design styles and their layouts	
4		Semiconductor Memories	08
	4.1	SRAM: ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits), DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits), Flash (mechanism, NOR flash, NAND flash) layout of SRAM and DRAM	
	42	Perinheral Circuits: Sense Amplifier Decoder	
5	7.2	Data Path Design	08
L L	5.1	Adder: Bit adder circuits, Ripple carry adder, CLA adder	00
	5.2	Multipliers and shifter: Partial-product generation, partial-product accumulation,	
		final addition, Barrel Shifter	
6		VLSI Clocking and System design	08
	6.1	Clocking: CMOS clocking styles, Clock generation, stabilization and distribution	
	6.2	Low Power CMOS Circuits: Various components of power dissipation in CMOS,	
	63	Linnis on low power design, low power design through voltage scaling.	
	0.3	Simultaneous switching noise, power distribution scheme	
	6.4	Interconnect: Interconnect delay model, interconnect scaling and crosstalk	
		Total	52

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition, 2012.
- 2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.
- 3. John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley, Student Edition, 2013.
- 4. Neil H. E. Weste, David Harris and Ayan Banerjee, "*CMOS VLSI Design: A Circuits and Systems Perspective*", Pearson Education, 3rd Edition.
- 5. R. Jacob Baker, "CMOS Circuit Design, Layout and Simulation", Wiley, 2nd Edition, 2013

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teaching Scheme			Credits Assigned					
		Theory	Practical	Tutorial	Theory	Total				
ETL601	Discrete Time		02			01		01		
	Signal									
	Processing									

Course	Course Name		Examination Scheme							
Code				Theory Mar	ks	Term	Practical	Oral	Total	
		Int	ernal as	ssessment	End Sem.	Work	and			
		Test	Test	Ave. Of	Exam		Oral			
		1	2	Test 1 and						
				Test 2						
ETL601	Discrete Time					25	25	-	50	
	Signal									
	Processing									

At least ten experiments covering entire syllabus of ETC 602:Discrete Time Signal Processing on should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done.

Practical and oral examination will be based on entire syllabus.

Course Code	Course Name	Teaching Scheme			Credits Assigned					
		Theory	Practical	Tutorial	Theory	Total				
ETL602	Communication		02			01				
	Engineering									
	Laboratory III									

Course	Course Name								
Code				Theory Ma	rks	Term	Practical	Oral	Total
		Inte	rnal as	sessment	End Sem.	Work	and		
		Test	Test	Ave. Of	Exam		Oral		
		1	2	Test 1					
				and Test					
				2					
ETL602	Communication					25	25	-	50
	Engineering								
	Laboratory III								

At least ten experiments covering entire syllabus for ETC 601: Digital Communication and ETC 603 Computer Communication and Networks should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus of ETC 601 and ETC 603

Course	Course Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ETL604	Communication		02			01		01
	Engineering							
	Laboratory IV							

Course	Course Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work	and		
		Test Test Ave. Of		Exam		Oral			
		1	2	Test 1					
				and Test					
				2					
ETL604	Communication					25	25	-	50
	Engineering								
	Laboratory -IV								

At least six experiments covering entire syllabus for ETC 606:VLSI Design and minimum four experiments for ETC 604: Television Engineering. should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus for ETC 606 and ETC 604.

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ETL605	Mini Project II		02			01		01

Course	Course Name	Examination Scheme								
Code				Theory Ma	Term	Practical/	Total			
		Int	ernal as	sessment	End Sem. Exam	Work	Oral			
		Test	Test	Ave. Of						
		1	2	Test 1 and						
				Test 2						
ETL605	Mini Project II					25	25	50		

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The students undergo various laboratory/tutorial/simulation laboratory/work shop courses in which they do experimentation based on the curriculum requirement. The mini Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning.
- Learn the behavioral science by working in a group

The group may be maximum **four** (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The final examination will be based on demonstration in front of internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed.

The topic of Mini Project I and II may be different and / or may be advancement in the same topic. The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Mini Projects.