UNIVERSITY OF MUMBAI

Bachelor of Engineering

Civil Engineering (Third Year – Sem. V & VI), Revised course

(REV- 2012) from Academic Year 2012 -13,

<u>Under</u>

FACULTY OF TECHNOLOGY

(As per Semester Based Credit Grading System)

Preface

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) give freedom to affiliated Institutes to add few (PEO's) course objectives course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, developed curriculum accordingly. In addition to outcome based education, semester based credit grading system is also introduced to ensure quality of engineering education.

Semester based Credit Grading system enables a much-required shift in focus from teacher-centric to learnercentric education since the workload estimated is based on the investment of time in learning not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. Credit grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year Final Year Engineering in the academic years 2014-2015, 2015-2016, respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble

The engineering education in India in general is expanding in manifolds. Now, the challenge is to ensure its quality to the stakeholders along with the expansion. To meet this challenge, the issue of quality needs to be addressed, debated taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education reflects the fact that in achieving recognition, the institution or program of study is committed open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I am happy to state here that, Program Educational Objectives were finalized in a meeting where syllabus committee members were also present. The Program Educational Objectives finalized for undergraduate program in civil Engineering are as follows:

- 1. To prepare Learner's with a sound foundation in the mathematical, scientific engineering fundamentals
- 2. To prepare Learner's to use effectively modern tools to solve real life problems
- To prepare Learner's for successful career in Indian Multinational Organisations to excel in Postgraduate studies
- 4. To encourage motivate Learner's for self-learning
- 5. To inculcate professional ethical attitude, good leadership qualities commitment to social responsibilities in the Learner's

In addition to above each institute is free to add few (2 to 3) more Program Educational Objectives of their own. In addition to Program Educational Objectives, course objectives expected course outcomes from learner's point of view are also included in the curriculum for each course of undergraduate program to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

Dr. S. K. Ukarande

Chairman, Board of studies in Civil Engineering University of Mumbai, Mumbai

Subject	Subject Name	Teaching Scheme (Contact Hours)					Credits Assigned				
Code		Theory		Pract.	Tut.	Theory	[,] Pra	ct.	Tut.	Total	
CE-C601	Geotechnical Engg. – II	4		2		4	1			5	
CE-C602	Design and Drawing of Steel Structures	4		2		4	1	1		5	
CE-C603	Applied Hydraulics – II	3		2		3	1			4	
CE-C604	Transportation Engg. – II	4		2		4	1			5	
CE-C605	Environmental Engg – I	3		2		3	1			4	
CE-C606	Theory of Reinforced Prestressed Concrete	4		2		4	1			5	
	Total	22		12		22	6			28	
		Examination Scheme									
Subject		Theory									
Code	Subject Name	Internal As		essment	End	Exam.	Term	Prac	t Oral	Total	
		Test 1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work		oru	Total	
CE-C601	Geotechnical Engg. – II	20	20	20	80	3	25		25	150	
CE-C602	Design and Drawing of Steel Structures	20	20	20	80	4	25		25 [@]	150	
CE-C603	Applied Hydraulics – II	20	20	20	80	3	25		25	150	
CE-C604	Transportation Engg. – II	20	20	20	80	3	25	25		150	
CE-C605	Environmental Engg. – I	20	20	20	80	3	25			150	
CE-C606	Theory of Reinforced and Prestressed Concrete	20	20	20	80	3	25		25	150	
	Total	120	120	120	480		150		125	875	

Semester VI

[@]Oral & Sketching

Semester V	

Course Code	Subject Name	Credits
CE-C601	Geotechnical Engineering. – II	5

Teaching Scheme

(Credits Assigned					
Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
04	02	-	4	2	-	6

Evaluation Scheme

Theory				Term wo	Total			
Internal Assessment			End Sem	Duration of	TW	PR	OR	
Test 1	Test 2	Average	Exam	End Sem				
				Exam				
20	20	20	80	03 Hrs.	25	-	25	150

Rationale

The basic knowledge of the analysis and design of foundation in the context of geotechnical engineering is very important for the civil engineering students. The subject provides the power of analyzing the laboratory and field experiments, their results and further its suitability in the analysis and design of geotechnical projects. The stability and suitability of foundation plays the important role in the field of civil engineering.

Objectives

- To understand the importance and basics of foundation engineering in the civil engineering projects
- To study the classical theories of earth pressure, load bearing capacity and settlement of foundations.
- To study the geotechnical aspects of foundations in view of safety and economy.

• To understand the use of various BIS codes in the geotechnical design of foundation

Detail Syllabus

Module	Sub Modules/Contents	Periods
1.	Stability of Slopes	06
	Introduction, Types of Slope Failures, analysis of finite & infinite slopes (No	
	proof), wedge failure, Swedish circle method, friction circle method, Stability	
	numbers, charts, numericals based on all the above concepts	
2.	Lateral Earth Pressure Theories	06
	i Introduction, types of earth pressure (At rest, active, passive)	
	ii Rankine's earth pressure theory: Active earth pressure; Passive Earth	
	pressure for horizontal & inclined backfill for cohesive & Cohesionless soils.	
	iii Coulomb's Wedge Theory: Active earth pressure; Passive Earth pressure	
	conditions (No Proof)	
	iv Graphical Methods:	
	a) Rebhann's construction for active pressure,	
	b) Culmann's Method for active condition,	
	c) Friction circle method: Cohesive & Cohesion less Soils,.	
	V Numericals on all the above concepts	
3.	Earth Retaining Structures:	04
	I) Types viz., Rigid & flexible	
	ii) Stability Analysis of Retaining Walls	
	iii) Cantilever Retaining walls: Earth Pressure Diagram, Embedment Length	
	iv) Numericals on the above concepts	
4.	Bearing Capacity of Shallow Foundations	12
	i) a) Definitions: Ultimate Bearing Capacity, Safe bearing Capacity,	
	Allowable Bearing Pressure,	
	b) Factors influencing Bearing Capacity	
	ii) Bearing Capacity Estimation Theories:	
	A) Terzaghi's Theory:	
	a) Assumptions, limitations, concept behind derivation, zone of failure, its	
	relevance to bearing capacity equation, modes of Failure.	

	b) Bearing Capacity for different Shear Failures, Different geometries.	
	c) Effect of Water Table on bearing Capacity.	
	B) Vesic's Theory: Bearing Capacity Equation.	
	C) IS Code Method: Bearing Capacity Equation.	
	iii) Field Methods:	
	 a) Standard Penetration Test: Estimation of Bearing Capacity from corrected SPT "N". 	
	b) Field Plate Load Test: Estimation of Footing Size, Graphical method of	
	estimating Allowable Bearing Pressure	
	iv) Numericals on the above concepts	
5.	Axially Loaded Pile Foundations:	06
	A) Definition, Types of Pile Foundations, Necessity of Pile Foundations.	
	B) Pile Carrying Capacity Estimation in Cohesive & Cohesion-less soils	
	i) Single Pile:	
	a) Static Methods,	
	b) Dynamic Methods,	
	c) Insitu Penetration Test (SCPT)	
	d) Pile Load Test as per IS: 2911.	
	C)Pile Groups : a) Ultimate Capacity	
	D) Settlement of Pile Groups in Cohesive & Cohesion-less soils as per IS: 2911.	
	E) Numericals on the above concepts.	
6.	Underground Conduits:	01
	i. a) Types of Conduits, b.) Load on Ditch Conduit c) Settlement Ratio,	
	ii.a) Plane of Equal Settlement,	
	b) Ditch Projection Condition.	
	iii No Proofs; numerical	
7.	Open Cuts:	02
	i.a)Definition: Open cut, Apparent Earth Pressure Diagram,	
	i.b) Average Apparent Earth Pressure Diagram for Cohesive & Cohesion-less	
	soils.	
	ii) Estimation of Strut Loads: Determination of Strut loads for struts placed in	
	Cohesive & Cohesion-less soils.	

8.	Stress Distribution:	03
	i. Stress due to self weight	
	ii.Boussinesq Theory	
	a)Concentrated Load	
	b)Uniformly distributed Load	
	iii Wetergaard's Theory	
	iv Newmarks influence charts	
	v Numericals on the above concepts.	
9.	Reinforced Soils:	06
	i) Definition of Geosynthetics, Types: Based on Materials, manufacturing	
	Process.	
	ii)Function & application of various Reinforcements.	
	iii) Geotextile in Pavement Construction.	
	iv) Geotextile Reinforced embankment on Soft Foundation, Potential	
	Embankment Failure modes	
	v) Geotextile Reinforced Railroad Track Construction	
	vi) Brief Discussion on Tests to be conducted on Geosynthetics.	

Contribution to Outcomes

On successful completion of the course, the students shall have the:

- Ability to apply the principle of shear strength and settlement analysis for foundation system.
- Ability to design shallow and deep foundations
- Ability to analyze and design earth retaining structures.
- Ability to analyze load carrying capacity of conduits and open cuts.

Theory Examination:

- 1. Question paper will comprise of **six** questions; each carrying 20 marks.
- 2. The **first** question will be **compulsory** will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- 3. The remaining **five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately; further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.

University of Mumbai

Civil Engineering Rev 2012-13 Page 44

- 4. There can be an **internal** choice in various questions/ sub-questions in order to accommodate the questions on all the topics/ sub-topics.
- 5. The students will have to attempt any **three** questions out of remaining five questions.
- 6. Total **four** questions need to be attempted.

Oral Examination:

The oral examination shall be based upon the entire syllabus and the term work comprising the report of the experiments performed in the laboratory including assignments.

List of Practicals: (*At least five to be conducted*)

- 1. Determination of Pre-consolidation pressure, coefficient of consolidation from one dimensional consolidation Test.
- 2. Determination of shear parameters form unconsolidated undrained tri-axial compression test.
- 3. Determination of shear parameters from direct shear Test.
- 4. Determination of cohesion from unconfined compression test.
- 5. Determination of CBR value from CBR Test.
- 6. Determination of shear strength of soft clays from vane shear test
- 7. Determination of swelling pressure of clays.

Term work:

The term work shall comprise of the neatly written report based on the afore-mentioned experiments and the assignments. The assignments shall comprise of the minimum 15 problems based on the above syllabus, distributed as far as evenly so as to cover all the modules/ sub-modules.

Distribution of Term Work Marks:

The marks of the term work shall be judiciously awarded for the various components depending upon the quality of the term work. The final certification & acceptance of term work warrants the satisfactory performance of drawing work by the student, appropriate completion of the report on the said drawing sheets, minimum passing marks to be obtained by the student. The following weightage of marks shall be given for different components of the term work.

- Report of the Experiments: 10 Marks
- Assignments : 10 Marks
- Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

• 75%-80% : 03 Marks; 81%-90% : 04 Marks 91% onwards: 05 Marks

Recommended books:

- 1. Soil Engineering in Theory and Practice: Alam Singh; CBS Publishers Distributors, New Delhi.
- 2. Soil Mechanics and Foundation Engineering: V. N. S. Murthy; Saitech Publications
- 3. Soil Mechanics and Foundation Engineering: *K. R. Arora*; Standard Publishers and Distributors, New Delhi.
- 4. Geotechnical Engineering: C. Venkatramaiah; New Age International.
- 5. Fundamentals of Soil Engineering: D. W. Taylor; John Wiley and sons.
- 6. An Introduction to Geotechnical Engineering: R. D. Holtz; Prentice Hall, New Jersey.
- 7. Soil Mechanics: R. F. Craig; Chapman and Hall.
- 8. Soil Mechanics: T. W. Lambe and R. V. Whitman; John Wiley and Sons.
- 9. Theoretical Soil Mechanics: K. Terzaghi; John Wiley and Sons.
- 10. Designing with geosynthetics: R. M. Koerner; Prentice Hall, New Jersey.
- 11. An introduction to soil reinforcement geosynthetics: G. L. SivakumarBabu; Universities Press.
- 12. Geosynthetics- An introduction: G. Venkatappa Rao; SAGES.
- 13. Relevant Indian Standard Specifications Code: BIS Publications, New Delhi

Semester VI

Course Code	Subject Name	Credits
CE – C 602	Design and Drawing of Steel Structure	5

Teaching Scheme

	Contact Hour	S	Credits Assigned			
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total
04		02	04		01	05

Evaluation Scheme

Theory					Term Work/ Practical/Oral			Total
Internal Assessment			End	Duration of	TW	PR	OR	
Test	Test	Averag	Sem	End Sem Exam				
		e	Exam					
20	20	20	80	04	25	-	25	150

Rationale

There are various types of the civil engineering structures which are subjected to various types of loading and their combination. Most of the structure are made of steel .These structure are designed either by working stress method or limit state method. The design methods of different components given in the syllabus are base on limit state method. Here in this course, Limit State methods are studied in detail

Objectives

- To understand the design concept of design of tension and compression member
- To understand the design concept of laterally supported and unsupported beams
- To understand the concept of plastic analysis of simple beam
- To understand the design concept of welded plate girder

Module	Sub – Modules / Contents	Periods
I	Introduction to Steel Structure	02
	Introduction to type of steel, mechanical properties of Structural steel,	
	advantages of steel as structural material, design philosophies of Working	
	Stress Method (WSM)	
Π	Introduction to Limit State Method	03
	Limit state Method, limit state of strength serviceability (deflection, vibration,	
	durability, fatigue, fire) characteristics, partial safety factor design loads,	
	partial safety factor for material. Structural steel section .Classification of	
	cross section-plastic, compact, semi-compact slender, limiting width to	
	thickness ratio.	
III	Simple Connection Bolted & Welded	05
	Introduction to bolted welded connection by working stress method and limit	
	state method. Type of bolts, advantage of bolts & welds, simple connection	
	for bolted and welded connection	
	for bolted and weided connection.	
IV	Tension Members	04
	Design of tension members with welded and bolted end connection using	
	single angle section & double angle section by Limit State Method, design	
	strength due to yielding of gross section, rupture of critical sections and block	
	shear.	
V	Compression Members as Struts	04
	Design of compression members as struts with welded /bolted end connection	
	using single angle sections & double angle section by Limit State Method	
	Effective length of compression members, buckling close of verious cross	
	Effective length of compression memoers, buckling class of various cross	
	sections, limiting values of effective sienderness ratio.	
	Compression Members as Column	06
T 7 T	Design of column with single built-up section, design of lacing batten plates	
VI	with bolted & welded connection using Limit State Method, column buckling	

	curves, effective length of compression members, buckling class of various	
	cross sections, limiting values of effective slenderness ratio,	
VII	Column Bases	03
	Design of slab bases & gusseted base using bolted /welded connection by	
	Limit State Method,	
VIII	Design of Member subjected to Bending	06
	Design of member subjected to bending by Limit State Method ,design	
	strength in bending, effective length, design strength of laterally supported	
	beams in bending, design strength of laterally unsupported beams, single	
	built-up rolled steel section using bolted/ welded connection, shear strength of	
	steel beam, web buckling, web crippling ,shear lag effect	
XI	Bracket Connection Beam to Column Connection	05
	Bolted welded connection by Limit State Method, beam to beam, beam to	
	column connection (simple frame connection, unstiffened and stiffened seat	
	connections.	
XII	Design of Trusses	04
	Determinate truss, imposed load on sloping roof, wind load on sloping roof,	
	vertical cladding including effect of permeability wind drag, analysis of pin	
	jointed trusses under various loading cases, design detailing of member end	
	connection support, design of purlin's, wind bracing for roof system.	
XIII	Design of Welded Plate Girder	06
	Introduction of plate girder , design of plate girder using IS 800 provision,	
	load bearing stiffeners, vertical stiffeners, horizontal stiffener	

Contribution to Outcomes

On completion of this course, the students will be able to understand the design of tension member, compression member, laterally supported beam, laterally un-supported beam by limit state method. They will be able to design truss. Students will be able to independently design steel structures using relevant IS codes.

University of Mumbai

Theory Examination:-

- 1. Question paper will comprise of **five** questions.
- 2. The first question will be **compulsory** which will carry **32** marks. This will be based on the projects.
- 3. The remaining **four** questions will be based on rest of the modules in the syllabus and will carry 16 **marks** each. For this, the module shall be divided proportionately further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.
- 4. There can be an **internal** choice in various questions/ sub-questions in order to accommodate the questions on all the topics/ sub-topics.
- 5. The students will have to attempt **any three** questions out of **remaining** four questions.
- 6. Total **four** questions need to be attempted.

Oral Examination:

The oral examination shall be conducted in conjunction with the sketching examination and it will be based upon the entire syllabus and the term work consisting of the assignments, projects including drawing sheets thereof.

Term Work:

The Term work shall consists of a neatly written Design Report including detail drawings on any of the two projects as indicated below:

- 1. Roofing system including details of supports
- 2. Flooring system including column.
- 3. Welded plate girder

The drawing should be drawn in pencil only on minimum of A-1 (imperial) size drawing sheets. In addition, the term work shall consist of the neatly written assignments covering the remaining syllabus.

Distribution of Term Work Marks:

The marks of the term work shall be judiciously awarded for the various components depending upon the quality of the term work. The final certification acceptance of term work warrants the satisfactory performance of drawing work by the student, appropriate completion of the report on the said drawing sheets minimum passing marks to be obtained by the student. The following weightage of marks shall be given for different components of the term work.

- Design Report and Drawing : 10 Marks
- Assignments : 10 Marks
- Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

• 75%-80% : 03 Marks; 81%-90%: 04 Marks 91% onwards: 05 Marks

Recommended Books:

- 1. Design of Steel Structures: N Subramanian, Oxford- University Press.
- 2. Limit State Design of Steel Structures: V. L. Shah and Veena Gore, Stuctures Publication, Pune.
- 3. Limit State Design of Steel Structures: S.K. *Duggal*, Tata Mc-Graw Hill India Publishing House
- 4. Design of Steel Structures: K.S. Sairam, Pearson

Reference Books:

- 1. LRFD Steel Design: William T. Segui, PWS Publishing
- 2. Design of Steel Structures: Edwin H. Gaylord, Charles N. Gaylord James, Stallmeyer, Mc-Graw-Hill
- 3. Design of Steel Structures: Mac. Ginely T.
- 4. Design of Steel Structures: Dayaratnam, Wheeler Publications, New Delhi.
- 5. Design of Steel Structures: Punamia, A. K. Jain and Arun Kumar Jain, Laxmi Publication
- 6. Design of Steel Structures: Kazimi S. M. and Jindal R. S., Prentice Hall India.
- 7. Design of Steel Structures: Breslar, Lin Scalzi, John Willey, New York.
- 8. Design of Steel Structures: Arya and Ajmani, Nem Chand and Bros., Roorkee
- 9. Structural Design in Steel: Sarwar Alam Raz; New Age International Publsihers
- 10. Relevant Indian Specifications, Bureau of Indian Specifications, New Delhi.

Semester VI

Course Code	Subject Name	Credits
CE-C603	Applied Hydraulics – II	4

Teaching Scheme

	Contact Hours			Credits As	signed	
Theory	Practical	Tutorial	Theory	Tutorials	Total	
03	02		03	01		04

Evaluating scheme

Theory					Term W	ork/ Practi	cal/Oral	Total
Inter	mal Asse	essment	End	Duration of	TW	PR	OR	
Test 1	Test 2	Average	Sem Exam	End Sem exam				
20	20	20	80	03 Hrs	25		25	150

Rationale

The knowledge of this subject is essential to understand facts, concepts of and design aspects of airplanes, submarines, ships, bridges as well as channels in alluvial and non alluvial soils. This subject provides necessary knowledge about concept of boundary layer theory, study of drag and lift in case of flow around submerged bodies, design of open channel and understanding of surface profiles.

Objectives

- To compute slope of a channel
- To calculate rate of flow in a channel
- To compute wetted perimeter and hydraulic radius of open channel flow
- To identify normal depth in an open channel
- To compute critical depth of a an open channel

University of Mumbai

Civil Engineering Rev 2012-13

- To study the design of open channel and understanding the concept of surface profile with hydraulic jump.
- To study the Kennedys and Lacey's silt theory to design irrigation channels.

Detail Syllabus

Module	Sub – Modules / Contents	Periods
1.	Boundary layer theory:	
	Development of boundary layer over flat curved surfaces, laminar	
	and turbulent boundary layer. boundary layer thickness, displacement	
	thickness, momentum thickness, energy thickness, drag force on a flat plate	5
	due to a boundary layer, turbulent boundary layer on a flat plate, analysis of	
	turbulent boundary layer, total drag on a flat plate due to laminar turbulent	
	boundary layer, boundary layer separation and control.	
2.	Flow around submerged bodies:	
	Force exerted by a flowing fluid on a stationary body, expression for drag	
	lift, drag on a sphere, terminal velocity of a body, drag on a cylinder.	5
	Development of a lift on a circular cylinder, development of a lift on an	
	aerofoil.	
3.	Flow through open channel:	
	Definition, types of channels, Types of flows in channels, Prismatic non-	
	prismatic channels, Uniform flow: steady flow and unsteady flow, laminar	
	and turbulent flow, subcritical flow, supercritical flow, Chezy's formula,	
	Manning's formula, hydraulically efficient channel cross-section (most	
	economical section), Velocity distribution in open channels, and pressure	
	distribution in open channels. Applications of Bernoulli's equation to open	17
	channel flow.	17
	Non uniform flow: Specific energy and specific energy curve, discharge	
	curve, Dimensionless specific energy discharge curve, applications of	
	specific energy. Momentum principle, application to open channel flow,	
	specific force. Hydraulic jump and standing wave, small waves surges in	
	open channels. Gradually varied flow, equation for gradually varied flow,	
	back water curve and afflux, surface profiles. Control section, location of	
	hydraulic jump.	

4. Fluvial Hydraulics:

Kennedy's theory, Kennedy's methods of channel designs, silt supporting capacity according to Kennedy's theory. Drawbacks in Kennedy's theory Lacey's regime theory, Lacey's theory applied to channel design. Comparison of Kennedys and Lacey's theory, defects in Lacey's theory. Introduction to sediment transport in channels.

9

Contribution to Outcomes

On completion of this course the student will be able to:

- 1. Develop the understanding of the flow phenomena (e.g. hydraulic jump, backwater waves, critical depth, etc) using experiments.
- 2. Understand the impact of engineering solutions for boundary layer theory in the context of submerged bodies.
- 3. Develop the understanding of the design and measurement of flow velocity in open channel.
- 4. Understand the different slope profiles and its effect on the flow characteristics
- 5. Study the specific energy it's applications

Theory Examination:-

- 1. Question paper will comprise of **six** questions; each carrying 20 marks.
- 2. The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- 3. The **remaining five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.
- 4. The students will have to attempt **any three** questions **out** of **remaining five** questions.
- 5. **Total four** questions need to be attempted.

Oral Examination:

The oral examinations shall be based on the entire syllabus the report of the experiments conducted by the students including assignments.

List of Experiments: (Any Six)

- 1. Determine Chezy,s roughness factor
- 2. Determination of gradually varied flow
- 3. Study of hydraulic jump and its characteristics.
- 4. Calibration of venturiflume
- 5. Calibration of standing wave flume
- 6. Determination of mean velocity of flow in open channel.
- 7. Study of wind tunnel
- 8. Calibration of broad crested weir
- 9. Calibration of submerged weir

Term Work:

The term-work shall comprise of the neatly written report based on the afore-mentioned experiments and the assignments. The assignments shall comprise of minimum 15 problems covering the entire syllabus divided properly module wise.

Distribution of Term Work Marks:

The marks of the term work shall be judiciously awarded for the various components depending upon the quality of the term work. The final certification acceptance of term work warrants the satisfactory performance of drawing work by the student, appropriate completion of the report on the said drawing sheets minimum passing marks to be obtained by the student. The following weightage of marks shall be given for different components of the term work.

- Report of the Experiments: 10 Marks
- Assignments : 10 Marks
- Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

• 75% - 80% : 03 Marks; 81% - 90% : 04 Marks 91% onwards: 05 Marks

Recommended Books:

- 1. Fluid Mechanics Hydraulics: *Dr. S. K. Ukarande*; Ane's Books Pvt. Ltd. (Revised Edition 2012), ISBN 97893 81162538.
- 2. Hydraulics and Fluid Mechanics: P. M. Modi S. M. Seth; Stard Book House, Delhi.

- 3. Theory and Application of Fluid Mechanics: *K. Subramanya*; Tata McGraw Hill India Publishing Company, New Delhi.
- 4. Fluid Mechanics and Fluid Pressure Engineering: D. S. Kumar; S. K. Kataria and Sons.
- 5. Fluid Mechanics: A. K. Jain; Khanna Publishers.
- 6. Fluid Mechanics: R. K. Bansal; Laxmi Publications Pvt. Ltd.
- 7. Fluid Mechanics: Fundamentals and Applications, *Yunus A. Cengel John M. Cimbala*, Tata Mc-Graw Hill Education Private Limited, New Delhi.
- 8. Fluid Dynamics: *Daiy Harleman*, Addition Wesley, New York, 1973.
- 9. Fluid Mechanics: R.A. Granger; Dover Publications, New York, 1995.
- 10. Flow in Open Channels: Subramanya K.; Tata Mc-Graw Hill Publishing House Pvt. Ltd.
- 11. Irrigation and Water Power Engineering: B. C. Purnnia.; Standard Publishers, New Delhi

Semester VI

Course Code	Subject Name	Credits
CE-C604	Transportation Engineering. – II	5

Teaching Scheme

	Contact Hour	`S		Credits	Assigned	
Theory	Practical	Tutorials	Theory Practical Tutorials Tota			
4	2	-	4	1	-	5

Evaluation Scheme

Theory				Term W	/ork/Practio	cal/Oral	Total	
Inte	ernal Asses	ssment	End	Duration of	TW	PR	OR	
Test I	Test II	Average	Sem	End Sem				
			Exam	Exam				
20	20	20	80	03Hrs	25	-	-	125

Rationale

Transportation contributes to the economical, industrial, social & cultural development of any country. The adequacy of transportation system of a country indicates its economic social development. Three basic modes of transportation include land, water and air. The land mode further includes highways & railways. The highways owing to its flexibility in catering door-to- door service are one of the most important modes. This course deals with the investigation, planning, design, construction and maintenance of highways including urban roads. This course also deals with the traffic planning, operation and control.

Objectives

- To give an insight of the development in the field of highway engineering, right from inception up to construction and maintenance.
- To understand the principles of highway geometrics.
- To understand the concept of traffic planning, design, operation and control. University of Mumbai Civil Engineering Rev 2012-13

- To study the various materials required for pavement construction including their characterization
- To analyze the different types of pavements and subsequently, their design.
- To study the various methods of construction of different types of pavements.
- To study the functional and structural evaluation of existing pavements and methods to strengthen the distressed pavements.

		Detail Syllabus
--	--	-----------------

Module	Sub Modules/Contents							
01	Highway Planning	03						
	i Classification of roads, brief history of road developments in India,							
	present status of roads in India							
	ii Highway alignment, basic requirement of ideal alignment, factors							
	governing highway alignment							
	iii Highway location survey, map study, reconnaissance, topographic							
	surveys, highway alignment in hilly area, drawing, report preparation							
02	Geometric design of highway	10						
	i Terrain classification, vehicular characteristics, highway cross section							
	elements, salient dimensions, clearances, width of carriage way,							
	shoulders, medians, width of road way, right of way, camber & its							
	profile.(IRC Standards)							
	ii Design speed, sight distance, perception time, break reaction time,							
	analysis of safe sight distance, analysis of overtaking sight distance,							
	intersection sight distance							
	iii Horizontal curves: design of super elevation, its provisions, minimum							
	radius of horizontal curves, widening of pavement, transition curves.							
	iv Gradients: different types, maximum, minimum, ruling, exceptional, grade							
	compensation in curves, vertical curves: design factors, comfort sight							
	distance. Summit curve, valley curve.							
	v Introduction of geometric design software.							
03	Pavement materials:	04						
	i Subgrade materials: desirable properties, modulus of elasticity, modulus							
	of subgrade reaction, classification of subgrade soils, importance of CBR.							

	ii	Subbase material: desirable properties, different tests on aggregate,						
		requirement of aggregate for different types of pavements.						
	iii	Bituminous materials: types of bituminous materials, test on bituminous						
		materials, desirable properties, grade of bitumen						
04	Pav	vement Design:	10					
	i	Types of pavements, different method of pavement design, comparison of						
		flexible & rigid pavements, design wheel load, equivalent single wheel						
		load, equivalent wheel load factor,						
	ii	Flexible pavement design: GI method, IRC approach (IRC:371970;						
		IRC:37- 1984; IRC: 37- 2001), Burmister's layers theory, introduction to						
		AASHTO method.						
	iii	Stress in Rigid Pavements, critical load position, stress due to load, stress						
		due to temperature variation, combine loading temperature stress.; Design						
		of rigid pavements (IRC: 58- 1988; IRC: SP- 62-2004)						
	iv	Introduction to pavement design software, relationship between numbers						
		of cumulative axle, strain value, elastic modulus of materials.						
05	Hig	ghway Construction	05					
	i.	Modern equipment for road construction, construction of different types of						
		roads: water bound macadam (WBM) road, different types of bituminous						
		pavements, cement concrete pavement.(As per IRC MORTH						
		specifications)						
	ii.	Constructions of stabilized roads: different method of soil stabilization,						
		use of geo-textile geogrid in highway subgrade.						
06	Hig	ghway Maintenance Rehabilitation	06					
	i.	Pavement failure: flexible pavement failure, rigid pavement failure,						
		maintenance of different types of pavements.						
	ii.	Evaluation of pavements: structural evaluation of pavements, functional						
		evaluation of pavement,						
	iii.	Strengthening of existing pavement: objective of strengthening, types of						
		overlay, different types of overlay, overlay design methodologies-						
		effective thickness approach, deflection approach and mechanistic-						
		empirical approach, design of overlays using effective thickness approach						
		and deflection approach resorting to Benkeleman Beam method (IRC: 81-						

	1981; IRC: 81-1997)					
07	Traffic Engineering and Control	08				
	i. Traffic study and surveys: speed studies, presentation of data, journey,					
	time delay studies, use of various methods, merits, demerits					
	ii. Vehicular volume count: types, various available methods, planning of					
	traffic count.					
	iii. O-D survey, need, uses, various available methods					
	iv. Parking survey, need types, traffic sign marking, signals, miscellaneous					
	traffic control aids, traffic regulations, traffic signals.					
	v. Intersection types: at grade separation, factors influencing design.					
	vi. Introduction to traffic design related software's.					
08	Highway drainage: necessity, surface drainage, subsurface drainage.(IRC	02				
	recommendations)					

Outcomes

On successful completion of the course, the students will understand the following

- Basic concept about highway engineering.
- Types of pavements different elements in each type.
- Materials used for highway construction
- Method of design of flexible rigid pavement.
- Construction & maintenance of different type of pavement
- Different types of traffic control systems
- Basic idea about the bridge engineering.

Theory Examination:-

- 1. Question paper will comprise of **six** questions; each carrying 20 marks.
- 2. The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- 3. The **remaining five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.

4. The students will have to attempt **any three** questions **out** of **remaining five** questions.

University of MumbaiCivil EngineeringRev 2012-13Page 60

5. **Total four** questions need to be attempted.

Oral Examination:

The oral examinations shall be based on the entire syllabus the report of the experiments conducted by the students including assignments and the Traffic Survey Report.

List of practical :- (At least seven to be performed)

- 1. Impact test on aggregates
- 2. Abrasion test on aggregates
- 3. Crushing test on aggregates
- 4. Shape test on aggregates
- 5. Penetration test on bitumen
- 6. Ductility test on bitumen
- 7. Softening point test on bitumen
- 8. Viscosity test on bitumen
- 9. Marshall stability test
- 10. Subgrade CBR

Tests on Aggregate:

Aggregate grading; Sp. Gravity; Crushing; Abrasion; Impact; Soundness; Flakiness; Shape, silica

Tests on Bitumen:

Viscosity, Penetration, softening point, flash & Fire point, Marshall Stability.

Tests on Subgrade:

Sub-grade CBR.

Term Work:

The term-work shall comprise of the neatly written report based on the afore-mentioned experiments and the assignments. Their shall be at least 10 assignments which will comprise of numerical problems and lay-out sketches, covering the entire syllabus divided properly module wise. In addition to this, the students shall conduct any one of the traffic surveys and will prepare a detail report thereof. This report shall form a component part of the term work.

Distribution of Term Work Marks:

University of Mumbai

The marks of the term work shall be judiciously awarded for the various components depending upon the quality of the term work. The final certification & acceptance of term work warrants the satisfactory performance of drawing work by the student, appropriate completion of the report on the said drawing sheets minimum passing marks to be obtained by the student. The following weightage of marks shall be given for different components of the term work.

- Report of the Experiments: 8 Marks
- Assignments : 8 Marks
- Traffic Study Report : 4 Marks
- Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

75% - 80% : 03 Marks; 81% - 90% : 04 Marks 91% onwards: 05 Marks

Recommended Books:

- 1. Highway Engineering: Khanna, S.K. and Justo, C. E. G.; Nem Chand and Bros., Roorkee,
- 2. Principles and Practice of Highway Engineering: Kadiyali, L. R.; Khanna Publsihers, Delhi
- 3. Principles of Transportation and Highway Engineering, *Rao*, *G.V.;* Tata McGraw Hill Publsihing House Pvt. Ltd., New Delhi.
- 4. Principles, Practice and Design of Highway Engineering (Including Airport Engineering)" Sharma, S.K.; S. Chand and Company Pvt. Ltd., New Delhi

Reference Books:

- Transportation Engineering and Planning: C.S. Papacostas and P.D. Prevedouros; Prentice Hall India Learning Pvt. Ltd., New Delhi
- Principles of Transportation Engineering: Chakrabory, Partha and Das, Animesh; Prentice Hall India Learning Pvt. Ltd., New Delhi
- 3. Transportation Engineering: *Khisty, C.J. and Lall, Kent, B.;* Prentice Hall India Learning Pvt. Ltd., New Delhi
- 4. Traffic Engineering and Transport Planning: Kadiyali, L.R., Khanna Publishers, Delhi
- 5. Relevant specifications of Bureau of Indian Standards
- 6. Relevant specifications of Indian Roads Congress

Semester VI

Course Code	Subject Name	Credits
CE-C605	Environmental Engineering – I	4

Teaching Scheme

	Contact Hours		Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorials To				
04	02		03	01		04	

Evaluating scheme

Theory					Term Work/ Practical/Oral			Total
Internal Assessment		End	Duration of	TW	PR	OR		
Test	Test	Average	Sem	End sem exam				
1	2	11, eruge	Exam					
20	20	20	80	03 HRS	25		25	150

Rationale

Environmental engineering is important for all human endeavors not simply about construction within the environment. This subject lays emphasis on the practical application of knowledge, while at the same time recognizing the importance of theoretical knowledge in developing the intellectual capacity of the engineer. Knowledge of this subject is useful for planning, designing, execution monitoring water supply sanitary schemes for the towns/cities.

Objectives

- To prepare students who can accomplish planning, design & construction of water systems & related infrastructural facilities.
- To give a practical orientation to so that they can give practical solutions to environmental problems in our society.

- To inculcate the students with sound theoretical knowledge in engineering sciences as well as in research consultancy skills.
- To impart positive responsive vocational attitudes, initiative creative thinking in their mission as engineers.

Detail Syllabus

Module	Sub Modules/Contents	Periods			
1	Water				
1.1	Man's environment; Importance of environmental sanitation	05			
	Water supply systems: need for planned water supply schemes, Sources of				
	water, components of water supply system determination of their design				
	capacities, Quantity of water, Water demand, Population forecasting methods				
	with numerical. Types of Intake structures.				
1.2	Distribution systems: Requirements of good distribution systems. Lay out of	06			
	distribution networks, advantage, disadvantages, Methods of distribution.				
	Design of distribution networks (Hardy cross method)				
1.3	Quality of water: wholesomeness palatability, physical, chemical, Biological	30			
	standards.				
	Treatment of water; impurities in water- processes for their removal- typical				
	flow sheets.				
	Sedimentation : Theory of sedimentation, Types, factors affecting efficiency,				
	design of sedimentation tank, tube settlers				
	Coagulation flocculation ; mechanisms, common coagulations, rapid mixing				
	flocculating devices, G GT values, Jar test, coagulant aids - Polyelectrolyte				
	etc.				
	Filtration: classification, slow and rapid sand filters, dual media filters,				
	gravel under drainage system, mode of action, cleaning, limitations,				
	operational difficulties, performance, basic design consideration, pressure				
	filters: construction & operation.				
	Water softening: lime soda base exchange methods, Principle reactions,				
	design considerations, sludge disposal.				

	Miscellaneous Treatments : removal of Iron, Manganese, taste, odour,							
	colour, principles methods, de-fluoridation, reverse osmosis							
	Disinfection : chlorination, chemistry of chlorination, kinetics of							
	disinfection, chlorine demand, free combined chlorine, break point							
	chlorination, super chlorination, dechlorination, chlorine residual, uses of							
	iodine, ozone, ultra violet rays, chlorine dioxide as disinfectants, well water							
	disinfection							
2	Municipal solid waste management	04						
	Solid waste : Sources, Types , composition, Physical biological properties of							
	solid wastes, sources types of hazardous infectious wastes in municipal solid							
	wastes							
	Solid waste generation collection, storage, handling , transportation,							
	processing							
	Treatment disposal methods							
	Material separation recycle, physic- chemical biological stabilization							
	solidification thermal methods, of disposal, site remediation, leachate & its							
	control.							
	Hazardous wastes: Effects of hazardous waste on environment & its disposal							
3	Building water supply:	03						
	Introduction, per capita supply, service connections from main, storage of							
	water supply systems in a building, sizing of pipes, water meters							
	Fixtures and fittings: Introduction, classification of fixtures, special							
	accessories, fittings. Pipe material, Joints, Valves.							
	Design of pipes, primary & secondary branches, Laying of pipes, testing and							
	maintenance of pipes.							

Theory Examination:-

- 1. Question paper will comprise of **six** questions; each carrying 20 marks.
- 2. The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.

- 3. The **remaining five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.
- 4. The students will have to attempt **any three** questions **out** of **remaining five** questions.
- 5. **Total four** questions need to be attempted.

Oral Examination:

The oral examinations shall be based on the entire syllabus, the report of the experiments conducted by the students including assignments and the report of the visit to the Sewage Treatment Plant.

List of Practicals: (Any eight experiments are to be performed)

- 1. Determination of Alkalinity in water
- 2. Determination of Hardness in water
- 3. Determination of pH in water
- 4. Determination of Turbidity in water
- 5. Determination of Optimum dose of coagulant by using Jar Test Apparatus
- 6. Determination of Residual chlorine in water
- 7. Solid Waste : Determination of pH
- 8. Solid Waste :Determination of moisture content
- 9. Most probable Number
- 10. Determination of chlorides in water

Term work:-

The termwork shall include the reports on experiments performed in the laboratory and the brief report on the visit to sewage treatment plant.

Distribution of Term Work Marks:

The marks of the term work shall be judiciously awarded for the various components depending upon the quality of the term work. The final certification acceptance of term work warrants the satisfactory performance of the experiments by the student, properly compiled report thereof and the report on the site visit and the minimum passing marks to be obtained by the student. The following weightage of marks shall be given for different components of the term work.

• Report of the Experiments: 12 Marks

University of Mumbai

- Sewage Treatment Plant Report : 08 Marks
- Attendance : 05 Marks

Recommended Books:-

- 1. Water Supply and Sanitary Engineering: S. K. Hussain, Oxford & IBH Publication, New Delhi.
- 2. Manual on Water Supply Treatment (Latest Ed.): Ministry of & Housing. New Delhi
- 3. Plumbing Engineering Theory and Practice: S.M. Patil, Seema Publications, Mumbai
- 4. Water Supply and Sewage: *E.W. Steel*, Mc-Graw Hill Publications, New York.
- 5. Water Supply and Sewage: *T.J. McGhee*, McGraw Hill Publications, New York
- 6. CPHEEO Manual on Water Supply and Treatment
- 7. Water Supply Engineering- P. N. Modi
- 8. Water Supply Engineering: S.K. Garg, Khanna Publishers, Delhi
- 9. Introduction to Environmental engineering: Vesilind, PWS Publishing Company.
- 10. Water supply and pollution control: *J.W. Clark, W. Veisman and M.J. Hammer*, International Textbook Company.
- 11. Relevant Indian standard specifications.
- 12. Integrated Solid Waste Management: *Tchobanoglous Theissen Vigil*, Mc-Graw Hill Publications, New York.
- 13. Solid Waste Management in Developing Countries: A.B. Bhide and B.B. Sundaresan.
- 14. Manual on Municipal Solid Waste Management: Ministry of Urban Development, New Delhi.
- 15. Environmental Pollution: Gilbert Masters
- 16. Basic Environmental Engineering: Nathanson J.A.; Prentice Hall of India Publications

Course Code	Subject Name	Credits
CE-C606	Theory of Reinforced and Prestressed Concrete	05

Teaching Scheme

	Contact Hours			Credits A	ssigned	
Theory	Practical	Tutorial	Theory Practical Tutorials			
04	02		04	01		05

Evaluation Scheme

Theory					Term Work/ Practical/Oral			Total
Internal Assessment		End	Duration of	TW	PR	OR		
Test	Test	Average	Sem	End sem exam				
1	2	TTTTTuge	Exam					
20	20	20	80	03 HRS	25			150

Rationale

Working stress Method (WSM) makes use of the concept of modular ratio based on the higher factor of safety in evaluating the stresses in two different materials of the RCC i.e. steel and the concrete. The new concept of pre-stressed concrete has also assumed significance in the field of concrete technology. The pre-stressed is the high strength concrete in which permanent internal stresses are deliberately introduced to counteract to the desired degree, the stresses caused in the member in service usually by high tensile steel wire or tension steel, embedded pre-tensioned prior application of the external load. The subject involves the application of either method in the analysis and design of the various elements of the civil engineering structures such as beams, slabs, columns and footing. The application of the concept of pre-stressed concrete also forms part of the subjects.

- To study the elastic theory philosophy in respect of R.C. structures and its applications to various elements such as beam, column, slab and footings
- To study the concept of prestressing of R.C structures and its applications in the analysis of R.C. structures.

Module	Sub Modules/Contents	Periods
1.	Concept of reinforced concrete, Working Stress Method (WSM) of design for	04
	reinforced concrete, permissible stresses as per IS-456-2000; stress- strain	
	curve of concrete steel, characteristics of concrete steel reinforcement.	
2.	Analysis design of singly reinforced doubly reinforced rectangular, Tee, L-	06
	beams for flexure by WSM, balanced, under reinforced over reinforced	
	sections.	
3.	Design for shear bond by WSM.	04
4.	Analysis & Design of rectangular circular columns subjected to axial bending	06
	by WSM.	
5.	Design of one way two way slab by WSM	06
6.	Design of axially loaded isolated sloped pad footings	05
7.	Prestressed Concrete: Basic principles of prestressed concrete, materials used	09
	their properties, methods systems of prestressing, losses in prestress, analysis of	
	various types of sections subjected to prestress external loads.	
8.	General design principles: Concepts of centre of compression, kern of a	04
	section, efficiency of the section, pressure line safe cable zone, principal	
	tension in prestressed concrete members.	
9.	Simple design of prestressed concrete I beams (excluding end block design)	04

Detail Syllabus

Outcomes

The students shall use the lectures to study the analysis & design of various elements of the reinforced concrete structures such as beam, slab, column, footings using the concept of working stress method. The student shall apply the knowledge gained in the subjects such as engineering mechanics, strength of materials structural analysis in analyzing the structural components further implement it for the designing these elements. Further the student shall use the tutorials to solve more practice problems.

Theory Examination:-

- 1. Question paper will comprise of **six** questions; each carrying 20 marks.
- 2. The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- 3. The **remaining five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.
- 4. The students will have to attempt **any three** questions **out** of **remaining five** questions.
- 5. **Total four** questions need to be attempted.

Oral Examination:

The oral examination shall be based upon the entire syllabus and the term work consisting of the assignments.

Term Work:

The term-work shall comprise of the neatly written report of the assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least four problems on each modules/ sub-modules contents thereof further.

Distribution of Term-work Marks

The marks of term-work shall be judiciously awarded depending upon the quality of the term work including that of the report on experiments assignments. The final certification acceptance of term-work warrants the satisfactory the appropriate completion of the assignments the minimum passing

marks to be obtained by the students. The following weightage of marks shall be given for different components of the term work.

- Assignments : 20 Marks
- Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

• 75%-80% : 03 Marks; 81%-90%: 04 Marks 91% onwards: 05 Marks

Recommended Books:

- 1. Design of Reinforced Concrete Structures: By Dayaratnam P.; Oxford & IBH.
- 2. Design of Reinforced Concre Structures: S. Ramamrutham
- 3. Design of Concrete Structures (Vol.I): Ramchandra
- 4. R.C.C. Designs: B.C. Punimia, Ashok Kumar Jain and Arun Kumar Jain; Laxmi Publications
- 5. Fundamentals of Reinforced Concrete: Sinha and Roy; S. Chand and Co., New Delhi.
- 6. Reinforced Concrete: Warnerr. R. F. Rangan B.C. & Hall A. S., Pitman.
- 7. Reinforced Concrete (Vol. I): *H.J.Shah*; Charotar Publishers.
- 8. Reinforced Concrete: *Syal and Goel*; Wheeler Publishers
- 9. Design of Prestressed Concrete Structures: Lin T.Y. and Ned Burns; John Wiley.
- 10. Prestressed Concrete: Krishna Raju, Tata Mc-Graw Hill Publishing House, New Delhi
- 11. Prestressed Concrete: Evans R. H. and Bennett E.W., Chapman and Hall.
- 12. Prestressed Concrete: N. Rajgopalan, Narosa Publishers
- 13. Relevant IS Codes: BIS Publications, New Delhi
- 14. Reinforced Concrete Design: *Pillai, S.U.* and *Menon, Devdas*, Tata Mc-Graw Hill Publishing House, New Delhi