University of Mumbai Syllabus Structure (R-2007) At

B.E. (Instrumentation Engineering) Semester-VII

		Schen	Scheme of							
S. No.	Subject	Instruc	tions	Sche		eme of Evaluation				
		Periods (60 min.							
		each) pe	r Week							
		Theory	Practical	Pa	per	TW	Practical	Oral	Total	
				Hours	Marks		& Oral		Marks	
1.	Industrial	04	02	3	100	25		25	150	
	Process Control									
2.	Biomedical	04	02	3	100	25		25	150	
	Instrumentation.									
3.	Advanced	04	02	3	100	25	25		150	
	Control Systems									
4.	Process	04	02	3	100	25		25	150	
	Automation									
5.	Elective-I	04	02	3	100	25		25	150	
6.	Project-I		02			25		25	50	
	Total	20	12		500	150	25	125	800	

Semester-VIII

		Sch	eme of						
S. No.	Subject	Instructions		Scheme of Evaluation					
		Periods	s (60 min.						
		each) j	per Week						
		Theory	Practical	Pa	per	TW	Practical	Oral	Total
				Hours	Marks		& Oral		Marks
1.	Batch Process	04	02	3	100	25	25		150
	Automation								
2.	Instrumentation	04	02	3	100	25		25	150
	Project								
	Documentation								
	& Execution								
3.	Instrument &	04	02	3	100	25		25	150
	System Design								
4.	Elective-II	04	02	3	100	25		25	150
5.	Project-II.		08			50		50	100
	Total	16	16		400	150	25	125	700

Elective Subjects

= Semester-VII	Semester-VIII
Elective-I	Elective-II
Advanced Embedded Systems	Power Plant Instrumentation
Fiber Optic Instrumentation	Digital Control System
Process Modeling and Optimization	Optimal & Robust Control Systems
Image Processing	Nuclear Instrumentation
Expert Systems	Automation in Energy and Infrastructure

University of Mumbai					
Class: B.E.	Branch: Instrumentation	trumentation Semester: VIII			
	Engineering				
Subject : Batch Process Automation (Abbreviated as BPA)					
Periods per Week	Lecture	04			
(60 min. each)	Practical	02			
	Tutorial				
		Hours	Marks		
Evaluation System	Theory	03	100		
	Practical & Oral		25		
	Term Work		25		
	Total		150		

Module	Contents	Hours
1	Introduction to Batch Processes	7
	1.1 Types of manufacturing processes- Discrete, Batch and	
	Continuous ones.	
	1.2 Examples of Batch Process Industries	
	1.3 Definition and characteristics of Batch Processes	
	1.4 Typical Batch Process Equipments- Batch reactor, Blenders	
	and Mixers, Agitators, Transport Headers, Heat Exchangers, Batch Distillation Columns, Pumps and Valves.	
	1.5 Typical Batch Process Operations Filling of Bulk	
	materials, Additives & Solids, Heating, Cooling and	
	Maintenance of Temperature, Mixing by Agitation &	
	Circulation.	
	1.6 Quality Analysis	
	Automation Requirements of Batch Processes –	
	Measurement, Closed Loop Control, Sequential Control,	
	Reporting	
	1.7 Role of Humans in Batch Process Control	
2	ISA S88 Batch Standard	3
	2.1 Introduction to ISA S88 Batch Standard	
	2.2 ISA S88 Physical Modeling	
3	Recipes	4
	3.1 Definition	
	3.2 Recipe Types – General, Site, Master and Control	
	Recipes	
	3.4 Recipe Content – Header, Formula, Procedure	
	3.5 Recipe Management	
4	Batch Execution using Batch Management Software	5
	4.1 Creating Master Databases – Equipment, Material	
	4.2 Creating Physical Model	

	4.2 Constinue and include a difference interview	
	4.3 Creating new recipes, modifying existing recipes	
	4.4 Downloading recipes to control system	
	4.5 Batch Operation	
	4.6 Storing of Batch Historical Data	_
5	Production Planning and Batch Scheduling	5
	5.1 Production plan	
	5.2 Equipment Availability	
	5.3 Resource Constraints	
	5.4 Batch Scheduling	
	5.5 Batch Historical Data	
6	Typical Control Schemes for Batch Processes	4
	6.1 Temperature Control of Batch Reactors	
	6.2 Set Point Programmer	
	6.3 Raw Material Charging – Bulk Liquids, Solids,	
	Additives, and Controlled Addition(fixed flow rate)	
	6.4 Operation of motors and automated on-off valves	
7	Control System Architectures for Batch Processes	5
	7.1 Use of industrial bus networks – Asi, Devicenet,	
	Modbus, Profibus, Canopen, Ethernet TCP/IP	
	7.2 Intelligent sensors and transmitters,	
	Intelligent motor starters, soft starters and VFDs	
	7.3 Communication with third party intelligent devices	
	7.4 Open Architecture systems	
	7.5 Centralized vs. Distributed Control	
8		5
0	Data Analysis and Reporting 8.1 Real Time and Batch wise data	3
	8.2 Historian Server – MS SQL Server	
	8.3 Data Analysis Clients – Excel, Web based	
	Types of Reports – Batch Log Sheet, Raw Material	
	Consumption Report, Equipment Utilization Report,	
	Quality Analysis Reports, Batch to Batch Analysis of	
	KPIs	
	8.4 Report Formats – Tabular, Graphical, Pie Chart, Bar Chart	
	etc.	-
9	MES and Integration with ERP Systems	4
	9.1 Overview of Manufacturing Execution Systems (MES)	
	and Enterprise Resource Planning (ERP) Systems	
	9.2 Objectives and Benefits of MES	
	9.3 Overview of ISA S95 Standard "Enterprise – Control	
	System Integration"	
	9.4 Application Study of Integration with ERP System	
10	Special Requirements for Pharmaceutical and Food	4
	Special Requirements for That macculcar and Food	-
	Industries.	
	Industries.	
	Industries. 10.1 Validation requirements	

- 1. Question paper will consist of total 7 questions carrying 20 marks each.
- 2. Only 5 questions need to be attempted.
- **3.** Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- **5.** In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Practical and Oral Examination:

Practical examination will be based on one experiment performed from the list of experiments given below and the oral will be based on entire subject.

Term Work:

Term work consists of minimum 8 experiments, written test, report of industrial visit to pharmaceutical or food processing industry and object oriented visit to systems integrator. The distribution of the term work shall be as follows,

Laboratory work (Experiments and Journal):15 marksTest (at least one):10 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term-work

List of Practical Experiments:

- 1. Charging of Liquid Raw Materials By Flow meter, Level and Load cell based weighing system
- 2. Study of Temperature Control of a Batch Reactor
- 3. Study of set point programmer, heating, cooling and temperature maintenance
- 4. Remote operation of motors and valves
- 5. Preparing a Plant Model based on ISA S88
- 6. Writing a recipe for a batch process
- 7. Programming a batch sequence in PLC/ DCS
- 8. Study of Batch Reports
- 9. Running a typical batch process using PLC/ DCS on the Batch Reactor set up
- 10. Comparison of actual batch parameters with standard.

Text Books:

- 1. Thomos Fisher, "Batch Control Systems, Design, Application and Implementation", ISA.
- 2. ISA S88 Standards Booklet
- 3. Bela G. Liptak "Instrument engineers handbook- Process control" Chilton book company- 3rd edition.

Class: B.E.		Branch: Instrumentation Engineering			
Subject: In IPDE)	istrumer	tation Project Documentation and Exec	ution(abb	reviated	as
Periods per	Week]	Lecture	04	
(60 min. ea	ch)	F	ractical	02	
		Г	utorial		
				Hours	Marks
Evaluation			Theory	03	100
System			Oral		25
5		Те	rm Work		25
			Total		150
Module		Contents		H	ours
1 2	deliv meth	Project : Introduction, predictability, structurables, Project Planning, Scheduling and bds and procedures. Project Team : Customer, designer and constants	nd Procure	and 8	
2	D				
3	 F F F Cal Cal Cal Cal Cal Cal T JB Ai Ins Ins	ments to be designed. ping and Instrumentation diagrams (P& ption, purpose, contents and practical applica trument Index Sheet trument specifications sheet- for temperature nstruments and control valves. rument Location Plan le and Tray Routing le Schedule Schedule header schedule rrument Hook- up diagrams oM for erection oop diagrams- pneumatic, electronic and digit CS/ SCADA graphics ogic diagrams.	tions. , pressure, i	eneral level,	8
4	Syst speci Arch Othe assig	<u> </u>	ment, Sy ram genera gn, I/O ad address, Sy	dress /stem	

	commissioning, Operations and maintenance(O&M) manual, and onsite training.	
5.	Installation Practices- cable laying (cable trays, cable types, cable glands), tubing, instrument installation, loop checking, calibration, testing and commissioning Procedures. Standards used in instrumentation project: ISA, ANSI, & NFPA.	8
6.	Advantages of using software packages for documentation. Survey of documentation software packages used in industry viz Intools, EPlan etc.	4

- 1. Question paper will consist of total 7 questions carrying 20 marks each.
- 2. Only 5 questions need to be attempted.
- **3.** Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper, weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral examination will be based on entire subject and visits.

Term Work:

Term work consists of a written test and following tasks:

- 1. Case study documents on AutoCAD
- 2. Visit to engineering consulting organizations like Uhde, KPG, Jacob Engg., Mod Mcdonald etc.

3. Survey of commercial software for documentation and study their special features e.g.

INTOOLS, Auto-studio, Smart Plant Automation, Eplan.

4. Study of ISA standard Specification Sheet such as transducer, transmitter, controller and control valve.

5. Study of Planning and Scheduling software like MS project.

The distribution of the term work shall be as follows,	
Laboratory work (Experiments and Journal)	:15 marks
Test (at least one)	:10 marks

Text Books:

1. Andrew Williams, "Applied instrumentation in the process industries", 2nd Edition, Vol. 2,

Gulf publishing company.

- 2. Whitt, Michael D., "Successful Instrumentation and Control Systems Design", ISA Publication.
- 3. Thomas McAvinew and Raymond Mulley, "Control System Documentation", 2nd Edition, ISA Publication.

- 1. NJATC, "Basics of Instrumentation", Cengage Learning.
- 2. Chinttan, Hiral Shah," Project planning and Engineering", Chinttan Publication

		University of Mumbai				
Class: B.E		Branch: Instrumentation Semester:		VI	II	
		Engineering				
Subject: In	strumen	t & System Design(abbreviated as ISD)				
Periods per	Week	Lecture	04			
(60 min.eac		Practical	02			
× ·	,	Tutorial				
			Hours		Marks	
Evaluation		Theory			100	
System		Ora			25	
System		Term Work			25	
					-	
		Tota	<u> </u>		150	
Module		Contents		Н	ours	
1	Design	of Transducers:		05		
•	0	overview of static and dynamic performance characteristics of				
	instruments. Selection criteria for flow, temperature, level, and					
	pressure					
	thermoc					
	-	re for thermocouple and RTD,.				
2	0	of Instrument Air Systems:	_	03		
		of instrument air, Sizing criteria. Air supplies sor systems. Air distribution system. Control room				
	-					
3		handling. Air dryers.		16		
3	0	of Control Valve: of flow equations. Valve selection and sizing	for liquid	10		
	-	gas or vapor service, flashing liquids, mixed p valve noise. Control valve cavitations. Actuat				
		of safety relief valves and rupture discs.	<i>0</i> -			
4	-	Panel Design:		08		
	Panel s					
	Diagran	Panel selection-size, type, construction and IP classification. GA Diagrams, Power wiring and distribution, Typical wiring diagrams				
		for AI,DI,AO,DO,RTD, and T/C modules. Earthing scheme. Panel				
		ventilation, cooling and illumination. Operating consoles-				
	U	nics. Wiring accessories- ferules, lugs, PVC ducts,	-			
		zes and color coding. Packing, Pressurized panels-				
5	-	ng for installation in hazardous areas. Ex-proof pane	218.	04		
5		nic product design: Engineering, ergonomics, phases involved in	electronic	04		
	product		ciccuonic			
6	-	ility engineering:		03		
		lity concepts, bath tub curve, MTTF, MTBF, ar	nd MTTR.			

	Quality and reliability. Causes of failures. Availability and	
	Maintainability. Redundancy and redundant systems.	
7	Control Room Design: Layout and environment.	04
8	Enclosure Design :	05
	Packing and enclosures design guidelines, Grounding and shielding,	
	front panel and cabinet design of an electronic product.	

- 1. Question paper will consist of total 7 questions carrying 20 marks each.
- 2. Only 5 questions need to be attempted.
- **3.** Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral examination will be based on entire subject.

Term Work:

Term work consists of minimum six assignments and written test. The distribution of the term work shall be as follows,

Laboratory work (Experiments and Journal)	:15 marks
Test (at least one)	:10 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term-work

Text Books :

- Bela G. Liptek, "Instrument Engineer's Hand Book Process Control", Chilton Company, 3rd Edition, 1995.
- Andrew Williams, "Applied instrumentation in the process industries", 2nd Edition, Vol. 1 & 3, Gulf publishing company.

- 1. R. W. Zape, "Valve selection hand book third edition", Jaico publishing house,
- 2. Les Driskell, "Control valve sizing", ISA.
- 3. Curtis Johnson, "Process Control Instrumentation Technology", PHI /Pearson Education 2002.
- 4. Kim R Fowler, "Electronic Instrument Design", Oxford University- 1996.
- 5. Manual on product design: IISc C.E.D.T.
- 6. Harshvardhan, "Measurement Principles and Practices", Macmillan India Ltd-1993
- 7. Balaguruswamy E, "Reliability", Tata Mc Graw-Hill Pub.co. New Delhi, 1999.

- Mourad Samiha & Zorian Yervant, "Principles of Testing Electronic Systems", New York. John Wiley & Sons, 2000.
- Lewis E E, "Introduction to Reliability Engineering(2nd)", New York. John Wiley & Sons, 1996.
- Anand M S, "Electronic Instruments And Instrumentation Technology", New Delhi. Prentice Hall Of India, 2004.
- Ott H W, "Noise Reduction Techniques In Electronic System. ,"(2) John Wiley & Sons New York, 1988.

	University of Mumbai		
Class: BE	Branch: Instrumentation	Semester-	VIII
	Engineering		
Elective-II: Power Plan	Instrumentation (Abbrevia	ated as PPI)	
Periods per Week	Lecture	4	
(each 60 min)	Practical	2	
	Tutorial		
		Hours	Marks
Evaluation System	Theory	3	100
	Oral		25
	Term Work		25
	Total		150

Module	Contents	Hours
1	 Energy sources, their availability, worldwide energy production, energy scenario of India. Introduction to Power generation- Classification: Renewable and nonrenewable energy generation resources. Renewable: small hydro; modern biomass; wind power; solar; geothermal and bio-fuels. Nonrenewable: fossil fuels (coal, oil and natural gas) and nuclear power. 	04
2	Boiler : Types of boilers, boiler safety standards. Boiler instrumentation, control and optimization, combustion control, air to fuel ratio control, three element drum level control, steam temperature and pressure control, boiler interlocks, sequence event recorder, data acquisition systems	08
3	Thermal Power Plant - Method of power generation, layout and energy conversion process, Types of Turbines & control, Types of Generators, condensers. Types of pumps and Fans, variable speed pumps and Fans, Material handling system, study of all loops-water, steam, fuel etc.	07
4	Hydroelectric Power Plant - Site selection, Hydrology, Estimation electric power to be developed, classification of Hydropower plants, Types of Turbines for hydroelectric power plant, pumped storage plants, storage reservoir plants.	06
5	Wind Energy: Power in wind, Conversion of wind power,Aerodynamics of wind turbine, types of wind turbine, andmodes of operation, power control of wind turbines, Betz limit,Pitch & Yaw control, wind mill, wind pumps, wind farms,	08

	different generator protections, data recording, trend analysis, troubleshooting & safety.	
6	 Solar Energy: solar resource, solar energy conversion systems: Solar PV technology: Block diagram of PV system, advantages and limitations. Solar thermal energy system: Principle, solar collector and its types, solar concentrator and its types, safety. 	05
7	Nuclear Power Plant: Nuclear power generation, control station and reactor control	06
8	Comparison of thermal power plant, hydro electric power plant, wind, solar, nuclear power plant on the basis of: Performance, efficiency, site selection, Economics-capital and running, safety standards, pollution, effluent management and handling. Power plant safety, Pollution monitoring, control Sound, Air, smoke, dust, study of Electrostatic precipitator.	04

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus
- 6. No question should be asked from the pre-requisite module

Oral Examination:

Oral examination will be based on industrial visit and entire subject.

Term work:

Term work consists of minimum eight experiments/assignments, industrial visit report and a written test. The distribution of the term work shall be as follows, Laboratory work (Journal) :15 marks Test (at least one) :10 marks The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Text Books:

1. "Boiler Control Systems Engineering", by G.F. Gilman, 2005, ISA Publication.

2. "Power plant engineering", P.K.Nag, 3rd edition, 2010. McGraw Hill.

- 1. "Power Plant Engg.", Domkundwar
- 2. "Non-conventional energy resources", by B. H. Khan, McGraw Hill, New Delhi.
- 3. "Renewable energy Technology", Chetan Singh Solanki, Prentice Hall Publication.
- 4. "Solar Energy", by S. P. Sukhatme, Tata McGraw Hill, New Delhi.

5. "Nonconventional energy sources" G. D. Rai, Khanna Publication.

6. Energy Management Handbook: W.C. Taeruer

7. Pollution: M.N.Rao and H.V. Rao.

8. Power system control Technology – Torsten Cegrell (PMI)

9. Energy Technology Handbook, considine D.M.(MHR)

10. Solar Energy Technology vol I & II Dickinson & cheremision off.

11. Wind Energy Handbook, Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi (2001), John Wiley & Sons, ISBN: 0471489972,

12. Wind Energy Explained: Theory, Design and Application

by James Manwell, J. F. Manwell, J. G. McGowan (2002), John Wiley and Sons Ltd, ISBN: 0471499722

13. Wind Turbine Operation in Electric Power Systems, Z. Lubosny (2003), Springer-Verlag New York, Inc ; ISBN: 354040340X.

14. David Lindsey, "Power Plant control and instrumentation - control of boilers

HRSG", Institution of Engineering and Technology.

	University of Mumbai		
Class: B. E.	Branch: Instrumentation	Semester:	VIII
	Engineering		
Elective-II: Digital Con	trol System (DCS)	-	
Periods per Week	Lecture	4	
(each 60 min)	Practical	2	
	Tutorial		
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Oral Examination		25
	Term Work		25
	Total		150

Module	Contents	Hours
1	Introduction	02
	Block diagram of Digital Control System, Advantages &	
	limitations of Digital Control System, comparison of	
	continuous data & discrete data control system, Examples of	
	digital control system.	
2	Signal conversion and processing	08
	Digital signal coding, data conversion and quantization,	
	sampling period considerations, sampling as impulse	
	modulation, sampled spectra & aliasing, Reconstruction of	
	analog signals, zero order hold, first order hold, frequency domain characteristics, principles of discretization- impulse	
	invariance, finite difference approximation of derivatives,	
	rectangular rules for integration, Bilinear transformation,	
	Mapping between s-plane & z-plane.	
3	Representation of digital control system	04
	Linear difference equations, pulse transfer function, input-	
	output model, examples of first order continuous and discrete	
	time systems, Signal flow graph applied to digital control	
	systems.	
4	Stability of digital control system in z-domain and Time	08
	domain analysis	
	Jury's method, R.H. criteria, Comparison of time response of	
	continuous data and digital control system, steady state	
	analysis of digital control system, Effect of sampling period on	
_	transient response characteristics.	1.0
5	State space analysis	18
	Discrete time state equations, significance of Eigen values &	
	Eigen vectors, first and second companion form,	
<u> </u>	Diagonalisation, Jordan Canonical form, similarity	

	transformation, state transition matrix, solution of discrete time state equation, Discretization of continuous state space model & its solution. Liyapunov stability analysis, definitions, theorem, concept of equilibrium state.	
6	Pole placement and observer designs Concept of reachability, Controllability, Constructability & Observability, Design of controller via Pole placement method, state observer design, dead beat controller design, concept of duality.	08

- 1. Question paper will consist of total 7 questions carrying 20 marks each.
- 2. Only 5 questions need to be solved.
- 3. Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper, weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus
- 6. No question should be asked from the pre-requisite module

Oral Examination:

Oral examination will be based on entire subject.

Term work:

Term work consists of minimum eight experiments and a written test. The distribution of the term work shall be as follows,

Laboratory work (Experiments and Journal):15 marksTest (at least one):10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

List of Laboratory Experiments:

1. Determine the range of sampling period for stability of the system.

2. Effect of dead time on system performance.

3. To determine response of zero order hold and first order hold using simulink of MATLAB.

4. Mapping from S- plane to Z-plane analytically and verification using MATLAB or any other suitable software.

5. Discretization of continuous data system using i) Step invariance method, ii) Impulse invariance method, and iii) Bilinear transformations, analytically and verification using MATLAB or any other suitable software.

6. To represent given system in different canonical forms, analytically and verification using MATLAB or any other suitable software.

7. To determine pulse transfer function of a given system analytically and its verification using MATLAB or any other suitable software.

8. Determination of state transition matrix analytically and its verification using MATLAB or any other suitable software.

9. To check controllability and observability of a given system analytically and verify the result using MATLAB or any other software.

10. To plot pole-zero map of a discrete system and comment on response and stability.

11. To design the controller using –

- i) Transform method
- ii) Ackerman's Formula

Analytically and verification using MATLAB or any other suitable software.

12. To design an observer using -

- i) Transform method
- ii) Ackerman's Formula

Analytically and verification using MATLAB or any other suitable software.

13. To design deadbeat controller and observer using any method analytically and verification using MATLAB or any other suitable software.

14. To check stability of given system using Lyapunov theorem.

Note: The above list is only indicative of possible experiments. Faculty may choose other experiments as well. Care should be taken that the entire syllabus is uniformly covered by the experiments.

Text Books:

- 1. M. Gopal, "Digital Contol and State Variable Methods", Tata McGraw Hill, 2nd Edition, March 2003.
- 2. K. Ogata, "Discrete Time Control Systems", Pearson Education Inc., 1995.
- 3. B.C. Kuo, "Digital Control Systems", Saunders College Publishing, 1992.

- 1. Richard J. Vaccaro, "Digital Control", McGraw Hill Inc., 1995.
- 2. Ashish Tewari, "Modern Control System Design with MATLAB", John Wiley, Feb. 2002.
- 3. Joe H. Chow, Dean K. Frederick, "Discrete Time Control Problems using MATLAB", Thomson Learning, 1st Edition, 2003.
- 4. Eronini Umez, "System Dynamics and Control", Thomson Learning, 1999.
- 5. Franklin Powel, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- 6. Digital Control Systems vol. I & II Isermann, Narosa publications

	University of Mumbai		
Class: B. E.	Branch: Instrumentation	Semester:	VIII
	Engineering		
Elective-II: Optimal and	d Robust Control Systems (Abbreviated a	as ORCS)
Periods per Week	Lecture	4	
(each 60 min)	Practical	2	
	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Oral Examination		25
	Term Work		25
	Total		150

Module	Contents	Hours
Prerequisite	Partial differentiation, gradient and gradient vector, solving	01
	differential equations of multi-order, integral calculus etc.	
1	Introduction: The basic concepts of optimal control,	02
	formulation of optimal control problem, performance criteria.	
2	Parameter Optimization: parameter optimization for servo	05
	systems (tracking problem), optimal control problem using	
	transfer function approach for continuous and discrete time	
	control system, output regulator problem.	
3	Linear Regulators: Linear quadratic regulator problem,	10
	Derivation of Riccati equation for continuous and discrete time	
	systems. State regulator, output regulator and tracking	
	regulator problem for continuous and discrete time control	
	system with examples.	
4	Dynamic Programming: Principles of optimality, derivation	10
	of Hamilton – Jacobi - Bellman equation, Application of	
	optimal control via dynamic programming for continuous and	
	discrete time systems.	
5	Calculus of Variation: Minimization of functions,	14
	minimization of functionals, fixed end point and variable end	
	point problems, formulation of variational calculus problem	
	using Hamiltonian method.	
6	Introduction to Robust Control System	06
	Robust control system and system sensitivity, analysis of	
	robustness, systems with uncertain parameters. Types of	
	uncertainties: additive and multiplicative with examples.	
	Design of robust control systems using worse case polynomial	
	and Routh-Hurwitz criteria.	

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper, weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus
- 6. No question should be asked from the pre-requisite module

Oral Examination:

Oral examination will be based on assignments on each Module given in the syllabus and the oral will be based on entire subject.

Term work:

Term work consists of minimum eight experiments/assignments and a written test. The distribution of the term work shall be as follows,

Laboratory work (Experiments and Journal)	:15 marks
Test (at least one)	:10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Assignments: Each student shall perform at least <u>08</u> assignments based on the above syllabus. Out of which at least <u>Four</u> assignments must be performed by using simulation software like MATHCAD/MATLAB/SCILAB.

Books Recommended:

Text Books:

- D. Kirk, "Optimal Control An Introduction", Prentice Hall, Inc., Englewood Cliff, N. J., 1970.
- 2) M. Gopal, "Modern Control System Theory", Wiley Eastern, 1982.
- Anderson B. D. O. and J. B. Moore, "Linear Optimal Control", Prentice Hall, Englewood Cliff, N. J., 1971.
- 4) R.C. Dorf, R.H. Bishop, "Modern Control Systems", 8th Edition, Addison Wesley, 1999.

- 1) Athens and Faib, "Optimal Control".
- 2) Petros A. Joannou and Jing Sun, "Robust Adaptive Control", Prentice Hall Inc, 1996.

	University of Mumbai		
Class: B.E.	Branch: Instrumentation	Semester:	VIII
	Engineering		
Elective-II: Nuclear Ins	trumentation (abbreviated a	is NI)	
Periods per Week	Lecture	04	
(60 min. each)	Practical	02	
	Tutorial		
		Hours	Marks
Evaluation System	Theory	03	100
	Oral		25
	Term Work		25
	Total		150

Module	Contents	Hours
1	Radioactivity : General Properties of Nucleus, Radioactivity	08
	,Nature of Nuclear Radiation's, Characteristic properties of	
	radioactive radiation's, Properties of Alpha, Beta, and Gamma	
	rays, Natural and artificial radio-activity. Radioactivity Laws,	
	Half life period, radioactive series, Isotopes and Isobars,	
	Various effects- photoelectric, Compton scattering and pair	
	production, stopping power and range of charged nuclear	
	particles.	
2	Radiation detectors : Techniques for weak signal detection,	08
	Detectors for Alpha, beta and gamma rays, Detector	
	classification – Ionization chamber, Regions of multiplicative	
	operation, Proportional counter, Geiger Muller counter-volt	
	ampere characteristics, Designing features, Scintillation	
	detectors (Photomultiplier tube- types, dark currents,	
	scintillators, pulse resolving power), efficiency of detection,	
	SNR improvement, Solid state detectors (Lithium ion drifted -	
	Si-Li, Ge-Li, Diffused junction, surface barrier)	
3	Electronics and Counting systems : Pre-amp., main	08
	amplifiers, Discriminators, Scalars and count rate meters, Pulse	
	shaping, pulse stretchers, Coincidence circuits, photon	

counting system block diagram, factors influencing resolution of gamma energy spectrum, Energy resolution in radiation detectors, single and multichannel analyzers (MCA),pulse height analyzers (PHA). 4 Application in Medicines: Gamma camera- design, block diagram, medical usage. Radiation uptake studies- block diagram and design features. Nuclear Instrumentation for	
detectors, single and multichannel analyzers (MCA),pulse height analyzers (PHA). 4 Application in Medicines: Gamma camera- design, block diagram, medical usage. Radiation uptake studies- block 10	
4 Application in Medicines: Gamma camera- design, block diagram, medical usage. Radiation uptake studies- block 10	
4 Application in Medicines: Gamma camera- design, block 10 diagram, medical usage. Radiation uptake studies- block 10	
diagram, medical usage. Radiation uptake studies- block	
diagram and design features Nuclear Instrumentation for	
diagram and design readeres. Ruelear instrumentation for	
health care, Radiation Personnel Health Monitors like neutron	
monitors, Gamma Monitors, Tritium monitors, Iodine monitors	
and PARA (particulate activity radiation alarms).	
5Applications in Industry:14	
Basic Nuclear Instrumentation system- block diagram,	
Nuclear Instrumentation for laboratory. Personal monitors	
like Thermo Luminescence Detectors (TLD), Dosimeters,	
ince metho Edimiescence Detectors (TED), Dosinieters,	
Tele-detectors, which are used to assess the radiation	
Tele-detectors, which are used to assess the radiation	
Tele-detectors, which are used to assess the radiation exposure to the radiation plant workers. Nuclear	
Tele-detectors, which are used to assess the radiation exposure to the radiation plant workers. Nuclear Instrumentation for power reactor. Nuclear Instrumentation	
Tele-detectors, which are used to assess the radiation exposure to the radiation plant workers. Nuclear Instrumentation for power reactor. Nuclear Instrumentation for Toxic fluid tank level measurement, Underground	
Tele-detectors, which are used to assess the radiation exposure to the radiation plant workers. Nuclear Instrumentation for power reactor. Nuclear Instrumentation for Toxic fluid tank level measurement, Underground Piping Leak detection, weighing, thickness gauges, water	

- 1. Question paper will consist of total 7 questions carrying 20 marks each.
- 2. Only 5 questions need to be attempted.
- 3. Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper, weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral examination will be based on entire subject.

Term work:

Term work consists of minimum three experiments (from the list given below) and ten assignments based on entire subject. The distribution of the term work shall be as follows.

The distribution of the term work shall be as follows.

Laboratory work (Experiments / Journal / Assignments) Test (at least one)

:15 marks :10 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

List of Experiments

Experiment No.1: Study of GM Counter Pulses

Purpose: The purpose of this experiment is to familiarize oneself with typical output pulses of a GM counting system. The fact that the pulse height increases with increasing voltage through different regions (ionization, proportionality etc) and is roughly constant in the Geiger region including that pulse height is the same regardless of the energy or character of incident radiation.

Experiment No.2: Study of the V-I characteristics of a GM Counting System.

Purpose: To study the variations of count rate with applied voltage and thereby determine the plateau region, operating voltage and slop of plateau.

Experiment No.3: To study the Gamma Ray Spectrometer.

Purpose: The purpose is to understand the functioning and working of Spectrometer. **Experiment No.4**: To obtain the spectrum of Gamma emitting isotope Cs 137 by using scintillator spectrometer.

Experiment No.5: To obtain the spectrum of Gamma emitting isotope Co 60 by using scintillator spectrometer.

Experiment No.6: To study the energy calibration of Spectrometer and analysis of the energy of unknown Gamma source.

Text Books:

- 1. G. F. Knoll, "Radiation Detection & Measurement", 2nd edition, John Wiley & Sons, 1998.
- 2. P.W.NICHOLSON, "Nuclear Electronics", John Wiley, 1998.
- 3. S. S. Kapoor & V. S. Ramamurthy, "Nuclear Radiation Detectors", Wiley Eastern Limited, 1986.

- 1. Gaur & Gupta, "Engineering Physics", Danpat Rai & Sons, 2001.
- 2. Irvin Kaplan, "Nuclear Physics", Narosa, 1987.
- 3. M.N.Avdhamule & P.G.Kshirsagar, "Engineering Physics", S.Chand & Co., 2001.
- 4. R. M. Singru, "Introduction to Experimental Nuclear Physics", Wiley Eastern Pvt. Ltd., 1974.
- 5. Hand Book of Nuclear Medical Instruments, TMH Publishing New Delhi, 1974.

University of Mumbai						
Class: B.E.	Branch: Instrumentation	Semester: VIII				
	Engineering					
Elective-II: Automation in Energy and Infrastructure (Abbreviated as AEI)						
Periods per Week	Lecture	04				
(60 min. each)	Practical	02				
	Tutorial					
			Marks			
Evaluation System	Theory	03	100			
	Oral		25			
	Term Work		25			
	Total		150			

Module	Contents	Hours
1	Energy Management	3
	1.1 Need for Energy Management	
	1.2 Impact on Environment	
	1.3 Energy Efficiency	
	1.4 Role of Automation in Energy Management	
2	Energy Monitoring	7
	2.1 Definitions and Significance of Electrical	
	parameters – Current, Voltage, Frequency,	
	Power, Energy, Power Factor, Maximum	
	Demand, and Harmonics	
	2.2 CTs and PTs – their types and selection	
	Transducers for Current, Voltage, Frequency,	
	Power, Energy, Power Factor	
	2.3 Intelligent Power Monitoring Units, Relays,	
	Switchgear devices	
	2.4 RTUs, PLCs for data concentration and	
	processing	
	2.5 SCADA for Energy Monitoring	
	Applications in Electrical Substations,	
	Factories, Data Centers, and Buildings	
3	Energy Audit	4
	3.1 Need for Energy Audit	
	3.2 Methodology adopted for Energy Audit	
4	Building Management Systems (BMS)	5
	4.1 Scope of BMS	
	4.2 Difference between BMS and PCS (Process	
	Control System)	
5	Automation of HVAC Systems	7

	5.1 Major Equipments in HVAC Systems –	
	Chillers, Blowers, Air Handling Units,	
	Dehumidifiers, Filters	
	5.2 Need for Automation in HVAC – Energy	
	Saving, Quality of environment	
	5.3 Typical HVAC parameters, their measuring	
	instruments, operating principles, specifications	
	limitations and installation practices –	
	Temperature, RH, Pressure and Differential	
	Pressure, Air Velocity	
	Motorized on-off valves, dampers and control	
	valves used in HVAC applications	
	5.4 Energy saving with VFDs on Pumps and	
	Blowers	
	5.5 DDC/ PLCs for monitoring and control	
	5.6 Typical Control Schemes	
	5.7 SCADA for BMS	
6	Fire Monitoring Systems	4
v	6.1 Smoke and Fire Detectors – Types and	
	Selection	
	6.2 Fire Detection Systems	
7	Security and Surveillance	5
	7.1 Access Control – Simple, Biometric, RFID,	
	Barcode	
	7.2 CCTV Systems – Types of CCTV Cameras	
	and their selection for different applications,	
	CCTV monitoring systems	
8	Other BMS Topics	5
	8.1 Lighting Control	
	8.2 Control of Elevators, Escalators	
	8.3 PA Systems	
9	Cabling in BMS	4
	9.1 Types of Cable – Signal Cables, Control	
	Cables, Power Cables, Bus Cables, Ethernet	
	Cables – UTP and Fiber Optic	
	9.2 Cabling Accessories – Cable Trays, Ducts,	
	glands, connectors,	
	9.3 Cable laying practices	
10	BMS Application Examples	4
	10.1 Shopping Malls	
	10.2 Hotels	
	10.3 Commercial Complex	
	10.4 Hospitals	
	10.5 Airports	

- 1. Question paper will consist of total 7 questions carrying 20 marks each.
- 2. Only 5 questions need to be attempted.
- **3.** Q.1 will be compulsory and based on the entire syllabus.
- 4. Remaining questions will be mixed in nature.
- **5.** In question paper, weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Oral Examination:

Oral examination will be based on entire subject.

Term Work:

Laboratory work (Experiments and Journal)	:15 marks
Test (at least one)	:10 marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term-work

Text Books :

- "Engineering Manual For Automatic Control For Commercial Buildings" Honeywell, SI Edition, 1997.
- 2. CIBSE Guide H, "Building Control Systems", Butterworth Hienemann.

- Reinhold A. Carlson Robert A. Di Giandomenico, "Understanding Building Automation Systems: Direct Digital Control, Energy Management, Life Safety, Security Access Control, Lighting, Building", 1st edition (R.S. Means Company Ltd), (1991)
- 2. Levenhagen John"HVAC control system Design Diagrams", Mcgraw Hill
- 3. Invensys Building systems
- 4. Audel HVAC Fundamentals, Vol 1