UNIVERSITY OF MUMBAI SCHEME OF INSTRUCTION AND EVALUATION (R2007) Programme: B.E. (ELECTRONICS ENGINEERING)

	SEMESTER: VII							
		No. of perio	ods of 1Hour	Duration of	Marks			
Sr. No	Subjects	Lecture	Practical	Theory Paper in Hours	Theory Paper	Term Work	Oral	Total
1	VLSI Design	4	2	3	100	25	25	150
2	Filter Design	4	2	3	100	25	25	150
3	Power Electronics and Drives	4	2	3	100	25	25	150
4	Communication Networks	4	2	3	100	25	25	150
5	Elective-II 1. Wireless communication 2. Advances in Biomedical Instrumentation 3. Micro computer system design 4. Digital Image Processing Design	4	2	3	100	25	25	150
6	Project -I		4			25	25	50
TOTAL		20	14	15	500	150	150	800

SEMESTER: VIII

	No. of periods of 1Hour		Duration	Marks			
Subjects	Lecture	Practical	of Theory Paper in Hours	Theory Paper	Term Work	Oral	Total
Advance VLSI Design	4	2	3	100	25	25	150
Robotics and Automation	4	2	3	100	25	25	150
Embedded Systems and Real- Time Programming	4	2	3	100	25	25	150
Elective-III 1. Advanced Networking Technologies 2. DSP Processors and architectures 3. Neural Networks & Fuzzy Systems 4. Electronics Product Design	4	2	3	100	25	25	150
Project -II		8			50	100	150
TOTAL	16	16	12	400	150	200	750
	Subjects Advance VLSI Design Robotics and Automation Embedded Systems and Real- Time Programming Elective-III 1. Advanced Networking Technologies 2. DSP Processors and architectures 3. Neural Networks & Fuzzy Systems 4. Electronics Product Design Project -II TOTAL	Subjects Iccture Advance VLSI Design 4 Robotics and Automation 4 Embedded Systems and Real- Time Programming 4 Elective-III 4 1. Advanced Networking Technologies 4 2. DSP Processors and architectures 4 3. Neural Networks & Fuzzy Systems 4 4. Electronics Product Design 4 1. Electronics Product Design 16	SubjectsLecturePracticalAdvance VLSI Design42Advance VLSI Design42Robotics and Automation42Embedded Systems and Real- Time Programming42Elective-III42Advanced Networking Technologies42DSP Processors and architectures42Neural Networks & Fuzzy Systems42Neural Networks & Fuzzy Systems42Project -II88TOTAL1616	SubjectsNo. of periods of HoldrDuration of Theory Paper in HoursAdvance VLSI Design423Robotics and Automation423Embedded Systems and Real- Time Programming423Elective-III4231. Advanced Networking Technologies4232. DSP Processors and architectures4233. Neural Networks & Fuzzy Systems4234. Electronics Product Design87. TOTAL161612	SubjectsLecturePracticalDuration of Theory Paper in HoursTheory Paper PaperAdvance VLSI Design423100Robotics and Automation423100Embedded Systems and Real- Time Programming423100Elective-III423100Image: Advance VLSI Design423100Embedded Systems and Real- Time Programming423100Image: Advance VLSI Design423100Image: Advance VLSI Design8400Image: Advance VLSI Design161612400	SubjectsLecturePracticalOf Theory Paper in HoursTheory PaperTerm WorkAdvance VLSI Design42310025Robotics and Automation42310025Embedded Systems and Real- Time Programming42310025Elective-III42310025Solution Solution Programming42310025Elective-III42310025Solution Solution Programming42310025Elective-III42310025Solution Solution Project -II85050TOTAL161612400150	SubjectsLecturePracticalDiration of Theory Paper in HoursTheory Paper in MoorkTerm WorkOralAdvance VLSI Design4231002525Robotics and Automation4231002525Embedded Systems and Real- Time Programming4231002525Elective-III4231002525So DSP Processors and architectures42310025253. Neural Networks & Fuzzy Systems4231002525Project -II850100TOTAL161612400150200

University of Mumbai

CL	ASS:	B.E.	(Electronics	Engineering)
----	------	------	--------------	--------------

SUBJECT: VLSI Design					
Periods per week	Lecture	04			
	Practical	02			
(each of 60 min.)	Tutorial	-			
		Hours	Marks		
Evaluation System	Theory Examination	3	100		
	Practical examination				
	Oral Examination	-	25		
	Term Work	-	25		
	Total		150		

Module	Contents	Hours
Objective	To familiarize students with the different aspects of the VLSI field and to introduce important concepts that have industry value	-
Pre-requisite	Digital System Design I and II, BEC	-
1. Introduction to VLSI	Evolution of logical complexity in ICs as a function of time, VLSI design flow, Y-chart representation, design hierarchy/design abstraction levels in digital circuits, concepts of regularity, modularity and locality, Semi-custom & full custom devices	03
2. Physics of MOSFET	MOS capacitor, energy band diagrams, band bending, flat band voltage, threshold voltage calculation, threshold adjustment, MOSFET linear and saturated operation(GCA), MOSFET capacitance, channel length modulation. Types of scaling, functional limitations of scaling, short channel, narrow channel effects, hot electron effects.	13
3. Semiconductor manufacturing process	Wafer processing, mask generation, oxidation, epitaxy, ion implantation, diffusion, metallization, photolithography, process steps for NMOS & PMOS devices, CMOS inverters, latch-up in CMOS and its prevention. Process simulation using CAD tools Video of manufacturing process to be shown.	03
4.Design rules and layout	Need of design rules, NMOS, PMOS and CMOS design rules and layouts. Design of NMOS and CMOS Inverter, NAND and NOR gates. Interlayer contacts, Butting and Buried contacts. Stick diagrams, layout of integrated circuits. Realization of Boolean expressions in CMOS. Use of CAD tools for layout design and simulation.	10

5.MOS Inverters	MOS inverters - resistive load - NMOS load - pseudo NMOS (Qualitative) and CMOS inverters (quantitative) -calculation of noise margin, calculation of rise, fall and delay times for CMOS inverter, transistor sizing and power dissipation , series and parallel equivalency rules, equivalent inverter (numericals on noise margin calculations, timing calculations, power dissipation, equivalency expected)	12		
6. Verilog	Basic concepts, structural gate level, switch level, behavior and RTL modeling. Arithmetic Circuits in CMOS VLSI – carry look ahead adder, high speed adders, subtractors, decoders, multiplexer and multipliers. Sequential circuits' implementation using verilog (Flip-Flop, registers and counters, state machines)			

Text Books:

- 1. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits -Analysis & Design, Second Ed., MGH
- 2. Jan M Rabaey, Digital Integrated Circuits A Design Perspective, Prentice Hall
- 3. Fabricius, Eugene D, Introduction to VISI Design. TMH
- 4. Samir Palnitkar, Verilog HDL, A Guide to Digital Design and Synthesis, Pearson Education.

Reference Books:

1. Neil H.E. Weste, Kamran Eshraghian, *Principles of CMOS VLSI Design: A* system perspective, Addison Wesley publication.

2. Fundamentals of Modern VLSI Devices by Yuan Taur, Cambridge University Press

Proposed Practical list

Suggested list of experiments using CAD tools such as Magic, Microwind, Tanner tools, Xilinx ISE etc.

- 1. Spice simulation of NMOS(resistive load, enhancement load, depletion load) inverters, CMOS inverters
- 2. Fabrication process simulation using CAD tool
- 3. Layout design and simulation , using CAD tools, of the following
 - 1. CMOS Inverter
 - 2. NAND/NOR gates
 - 3. Boolean expressions
 - 4. Mux/Decoder
 - 5. Logic expression using pass transistor/ transmission gate
 - 6. 6T RAM cell
- 4. Simulation and synthesis of Verilog code for
 - 1. Adder/subtractor
 - 2. Mux/decoder
 - 3. flip-flop/counters
 - 4. State machines

Term work:

The term work should contain at least 7 CAD programs and 2 assignments covering the whole syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

University of Mumbai							
CLASS: B.E. (Electronics Engineering) Semester - VII							
	SUBJECT: Filter Design						
Periods per week	Lecture	4					
	Practical	2					
(each of 60 min.)	Tutorial	-					
		Hours	Marks				
Evaluation System	Theory Examination	3	100				
	Practical examination						
	Oral Examination	-	25				
	Term Work	-	25				
	Total		150				

Objective	Filter is an important part of any electronic system. This course is to introduce the student the design of analog and digital filters ,adaptive filters and multirate signal processing				
Pre-	Continuous and Discrete time signals and systems				
Module	Contents	Hours			
1	Analog filters Filter specifications, Introduction to Butterworth Chebyshev, design (Derivation of T.F.), Elliptical filters, Frequency Transformations Low pass, high pass and band pass active filter realization, infinite gain single amplifier (LP,BP & HP) positive and pegative feedback infinite gain single	10			
2	amplifier filters, high order filters. Direct realization methods: Active network elements for direct realization, inductance simulation frequency dependent negative resistors, leapfrog realization techniques, primary resonator block, switched capacitor filters.	10			
3	IIR filter design IIR filter design methodology, Design of Butterworth and Chebyshev filters using Impulse/step invariant method, matched Z Transform method, Bilinear transform Technique. Spectral transformations Filter design by pole zero placements.	6			
4	FIR filter : Analysis and design Linear phase FIR filter and its types, FIR filter design using windows and Frequency sampling method, Half Band FIR filter design.	6			
5	Adaptive Filters: Concept of adaptive filter ,MMSE criterion ,LMS and RLS algorithms ,Basic Weiner filter and its applications	8			
6	Multirate Digital signal Processing Concepts Decimation Interpolation ,sampling rate conversion by raional factor, polyphase structures ,multistage implementation ,applications like subband coding and Quadrature mirror filtering.	8			

Text- Books:

- Principles of Active network synthesis and design: Govind Daryayani John Wiley publication
- Active and passive analoig filter design- Lawrence P Huelson Tata- Mc-Grawhill publication
- E.C.Ifeachor and B.W Jervis, Digital Signal Processing A Practical approach, Pearson Publication, second edition
- Ashok Ambardar, Digital Signal Processing, Cengeg Learning Publication,.

- J.G. Proakis, D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and applications, Prentice Hall of India, 1995
- A.V. Oppenheim, Ronald W Schafer, Prentice Hall, 1983.
- A.Antoniou, Digital Filter analysis and applications. Tata McGraw-Hill Publication.
- Siman Hykin, Adaptive filters, PHI Publications
- S,Salivahanan, A. Vllaraja, C.Ganapriya Digital signal processing ,Mc Graw Hill ,second edition
- P.P.Vaidyanathan Multirate systems and Filter Banks Prentice Hall of india 2006
- Digital signal processing :system analysis and design .Diniz ,da sillva, Netto Cambridge university press

Reference Books:

- B.P.Lathi, linear systems and signals Oxford University Press second Indian Impression, 20007.
- S.K. Mitra, Digital Signal Processing, Tata McGraw-Hill Publication, 2001
- Chi-tsong Chen Digital signal processing, Oxford University Press
- P.P.Vaidyanathan Multirate systems and Filter Banks Prentice Hall of india 2006
- Digital signal processing:fundamentals and applications Li Tan Acadamic press

Suggested list of simulations Matlab or C/C++ or Labview:

- 1. Analysis of analog filters in frequency domain
- 2. IIR filter design : Impulse invariant and Bilinear transform method
- 3. Linear phase filters: comparison of various types
- 4. FIR design using windows
- 5. FIR design using frequency sampling
- 6. Effect of quantization on filter design
- 7. Introduction to FTA tool for filter design
- 8. Application of adaptive signal processing to practical one dimensional signal e.g. speech signal ,ECG signal, music signal etc
- 9. Implementation of interpolation and decimation operation
- 10. implementation of filter on DSP processor

Term Work:

The term work shall consist of at least **two numerical assignments and six MATLAB Or C/C++ or Labview simulations** covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will be comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module.

	University of Mumbai		
CLASS: B.E. (Electro	onics Engineering)	Semester	- VII
SUBJECT: Power Ele	ectronics and Drives		
Periods per week	Lecture	4	
	Practical	2	
(each of 60 min.)	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical /Oral		
	examination		
	Oral Examination	-	25
	Term Work	-	25
	Total		150

Objective	To teach the applications of power electronics devices. Also to study Industrial Drives.	
Pre- requisite	Power Semiconductor devices, AC and DC machines	
Module	Contents	Hours
1	Phase Controlled Converter: Single phase bridge converter with effect of source impedance. Dual converter.	04
2	Chopper: Principle of chopper operation, step –up and step – down, one quadrant, two quadrant chopper (Type A and B). Thyristorised chopper circuits a) Voltage commutated chopper b) Current commutated chopper c) Load commutated chopper	10
3	Inverter: Classification of inverter, Analysis & Design: a) Series, Parallel and bridge (Mc Murray) b) Voltage and current source inverter c) PWM inverter Different methods for harmonic reduction in inverter output.	12
4	 DC Drives: Concept of DC electric drive with respect to speed control. Single phase, half wave semi converter, full converter drive for separately excited dc motor. Dynamic and regenerative braking of DC motor. Methods used to adjust following parameters of a typical dc drive. 1) Speed 2) IR compensation 3) current limit 4) acceleration/de-acceleration 	08
5	AC Drives: Induction motor fundamentals and speed control methods 1. Stator voltage 2. Variable frequency 3. Rotor resistance 4. Slip energy recovery scheme Drives related to V/F control and slip power recovery scheme.	08
6	Applications: SMPS and UPS:- Analysis of fly back, forward and half bridge converters	06

for SMPS. Block diagram and configuration of UPS, salient features, selection of battery and charger ratings and sizing of UPS

Text Books:

- 1) General Electric: SCR manual, USA.
- 2) M.H. Rashid, Power electronics, PHI India.
- 3) M.D. Singh and K.B. Khanchandani, power electronics, Tata McGraw Hill
- 4) Dr. P.S. Bimbhra, Power Electronics, Khanna Publications.
- 5) shepherd, Hulley, Liang power electronics and motor control second edition, Cambridge

Additional Reading:

Chute and Chute: Electronics in Industry; MGH
 B.W. Williams: Power Electronics, Jhon Willey, 1975.
 P.C. Sen, Power Electronics, TMH.

Suggested Laboratory Experiments

Minimum Six experiments on

- Various types of Inverters
- Various types of Choppers
- Speed Control of DC Motor and Induction Motor

Term work:

Term work shall consist of minimum six experiments, Two Assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work	(Experiments and Journal)	: 15 marks.
-----------------	---------------------------	-------------

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

BE, VII-VIII, Electronics, wef 2010-11

University of Mumbai							
CLASS: B.E. (Electro	Semester – VII						
SUBJECT: Communication Networks							
Periods per week	Lecture	4					
(Each of 60 min.)	Practical	2					
	Tutorial	utorial -					
		Hours	Marks				
Evaluation System	Theory Examination	3	100				
	Practical examination	-	-				
	Oral Examination	-	25				
	Term Work	-	25				
	Total		150				

Objectives:		
Interconnectin	g nardware, configuring network systems, measuring	
periormance,	observing protocols in action, and creating client-serv	'el sto'o
undorstanding	and appreciation	115 5
Medule		Haura
wodule	Contents	Hours
1	Introduction to Communication Networks	06
	Communications Model, Data Communication	
	Networks- Public Switched Telephone Network	
	(PSTN), Leased Line, Local Area Networks	
	(LAN), Public Switched Data Network (PSDN),	
	and Integrated Services Digital Network (ISDN).	
	Communication Architectures. Protocol Laver	
	Concepts, OSI Laver, Standard Organizations,	
Transmission Media: Twisted pair. STP. UTP.		
	Coaxial cable Fiber Optics Wireless	
	Microwave Satellite Radio and Media	
	Properties	
2	Data Transmission and Digital Carrier	08
2	Systems	00
	Systems Simplay Half Duplay Full Duplay Sarial and	
	Simplex, Hall-Duplex, Full-Duplex, Serial and	
	Parallel Transmission, Synchronous and	

	Asynchronous Iransmission, Bit Oriented	
	Synchronous Transmission, Byte Oriented	
	Synchronous. Modern functions, Standard V	
	Digital Carrier Systems:	
	T-carrier Super frame Extended Superframe	
	(ESE) XDSI E-carrier PDH Synchonouse	
	Digital Hierarchy, Synchronous Ontical Network	
	concept of SONET/SDH and Digital	
	Multiplexing Hierarchy.	
3	Data Link Control	08
Ŭ	Flow Control, Framing, Sliding-Window, Error	00
	Detection. Parity Check. Cvclic Redundant	
	Check (CRC), Error Control Techniques, Stop-	
	and-Wait ARQ, Go-back-N ARQ, Selective-	
	repeat ARQ. HDLC Frame Format.	
4	Switching Network	08
	Switching technology, Circuit switching, Packet	
	switching, Virtual Circuits and Datagram. Routing	
	in Packet Networks, Network Algorithms and	
	Shortest Path Routing, Congestion Control in	
	Switched Data Networks.	
5	Local Area Networks and High-Speed LANs	10
	LAN characteristics, Topology, Bus, Ring, Star,	
	LAN Media, Data Link Layers, MAC Address,	
	Logical Link Control, LAN Standard, IEEE 802.2,	
	IEEE 802.3- CSMA/CD, CSMA/CA Ethernet	
	architecture, IEEE 802.3 specifications, Hub,	
	10Base5, 10Base5, 10Base1, 10BaseF,	
	Concept of bridge LAN., Ethernet Frame, Binary	
	Back off, Inter-frame Gap, Ethernet	
-	Derformence Ethernet Switching IEEE 0024	
	Performance, Ethernet Switching. IEEE 802.4,	
6	Performance, Ethernet Switching. IEEE 802.4, IEEE 802.5, Gigabit Ethernet and FDDI.	09
6	Performance, Ethernet Switching. IEEE 802.4, IEEE 802.5, Gigabit Ethernet and FDDI . Applications and Layered Architectures	08
6	Performance, Ethernet Switching. IEEE 802.4, IEEE 802.5, Gigabit Ethernet and FDDI . Applications and Layered Architectures Examples of Protocols, Services (HTTP, DNS and SMTP, etc), and Layering, TCP/IP	08
6	Performance, Ethernet Switching. IEEE 802.4, IEEE 802.5, Gigabit Ethernet and FDDI. Applications and Layered Architectures Examples of Protocols, Services (HTTP, DNS and SMTP etc), and Layering, TCP/IP Architecture TCP/IP Protocol IP Addressing	08
6	Performance, Ethernet Switching. IEEE 802.4, IEEE 802.5, Gigabit Ethernet and FDDI. Applications and Layered Architectures Examples of Protocols, Services (HTTP, DNS and SMTP etc), and Layering, TCP/IP Architecture. TCP/IP Protocol, IP Addressing, The Berkeley API Application Layer Protocols	08
6	Performance, Ethernet Switching. IEEE 802.4, IEEE 802.5, Gigabit Ethernet and FDDI. Applications and Layered Architectures Examples of Protocols, Services (HTTP, DNS and SMTP etc), and Layering, TCP/IP Architecture. TCP/IP Protocol, IP Addressing, The Berkeley API, Application Layer Protocols and TCP/IP Utilities	08

Text Books:

1. William Stallings, Data Computer Communications, Pearson Education

- 2. A. Leon-Garcia and Indra Widjaja, Communication Networks, Tata McGraw-Hill Publication
- 3. Behrouz A Forouzan, Data communications and Networking 4th Edition, McGraw-Hill Publication.
- 4. J. F. Kurose and K. W. Ross, Computer Networking, Pearson Education
 5. D. Bertsekas and Gallager, Data Networks, 2nd Edition, Prentice-Hall of India

Reference Books:

1. Gerd Keiser, Local Area Networks, McGraw-Hill Publication.

- 2. Dayanand Ambawade and Deven Shah, Linux Lab, Wiley-Dreamtech Publication.
- 3. Behrouz A Forouzan, Local Area Network 4th Edition, McGraw-Hill Publication

4. Youlu Zheng, Networks for computer scientists and engineers OXFORD Publication

5. Natalia olifer Victor olifer, Computer Networks Wiley- Publication

Proposed Practical list:

- 1. Study of Hardware and Software Components of Computer Communication and Networking
- 2. Network Installation & Configuration of Network OS : GNU/Linux
- 3. IP Networking & Network Commands: *ifconfig*, *ping*, *traceroute*, *netstat*, *arp*,*nslookup dig* & *route* etc.
- 4. Study of Modem Commands, Queries
- 5. Study of Serial Communication (RS-232)
- 6. Study of Network topology and flow control techniques.
- 7. Simulation of Shortest path routing algorithms.
- 8. Installation and Configuration of Telnet & FTP Server/Client
- 9. Installation and Configuration of DNS & Web Server/Client
- 10. Network Protocol Analyzers : TCPDUMP & ETHEREAL
- 11. Implementation of CSMA/CD and Stop-n-Wait Protocols using Network Simulator (ns-2)
- 12. Study of Wireless LAN (WLAN): Adhoc & Infrastructure Network Mode
- 13. Implementation of Socket Programming

Term work:

Term work shall consist of minimum six experiments, 2 Assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal)	: 15 marks.
---	-------------

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any

module other than module 3.)

- In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus. No question should be asked from pre-requisite module 5.
- 6.

University of Mumbai			
CLASS: B.E. (Electro	Semester	– VII (Elective)	
SUBJECT: WIRELES	S COMMUNICATION (Electiv	ve)	
Periods per week	Lecture	4	
	Practical	2	
(each of 60 min.)	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical examination		
	Oral Examination	-	25
	Term Work	-	25
	Total		150

Module	Contents	Hours
Objective	The objective of the course is to introduce the	-
	Concepts of basic wireless mobile communication systems.	
Pre-requisite	Fundamentals of Digital Communication	-
2	Introduction and Cellular Concept Existing technology, Evolution in wireless systems, Trends in cellular system Frequency Reuse channel Assignment Strategies, Handoff Strategies, Interference and System Capacity, Cellular System, Design in worst case with an omni Directional Antenna, Co-Channel Interference Reduction with use of Directional Antenna, Improving Coverage and Capacity in Cellular systems, Trunking and Grade of service WIRELESS COMMUNIACTION SYSTEMS GSM GS Services and features , GSM Architecture and interfaces, GSM Radio Sub System , GSM Channel Types , Traffic Channels, Control Channels, Example of a GSM call, Frame structure for GSM , Signal Processing in GSM, GPRS	08
3	Wideband Modulation Techniques –OFDM Basic Principles ,OFDM Signal Mathematical	12

	representation , Block Diagram , Selection Parameters for modulation , Pulse shaping, Windowing, Spectral Efficiency , Synchronization	
4	WIRELESS COMMUNIACTION SYSTEMS CDMA IS95 Direct sequence Spread Spectrum , Spreading codes, Multipath Signal Propagation and RAKE receiver, Frame Quality and BER Requirements, Critical challenges of CDMA,TIA IS95 System, Physical and Logical Channels of IS95, CDMA IS95 call processing, soft hand off and power control in CDMA,Access and Paging Channel Capacity, Reverse and Forward Link Capacity of a CDMA System.	08
5	WIRELESS COMMUNIACTION SYSTEMS CDMA 2000 : CDMA layering structure, CDMA 2000 channels, logical channels , forward link physical ,forward link features ,reverse physical channels , CDMA 2000 Media Access control and LAC sub layer, Data services , Data services in CDMA 2000 , mapping of logical channels to physicals, evolution of CDMA IS95 to CDMA 2000.	10
6	More WIRELESS COMMUNIACTION SYSTEMS Bluetooth, Wi Fi Standards, WIMAX, Wireless Sensor Networks, Zigbee, UWB, IEEE 802.20 and Beyond.	04

Text Books:

- 1) Wireless Communication : Principles and Practice Theodare . S. Rappaport- Pearson Education
- 2) Wireless Communication :- Upena Dalal Oxford Higher Education
- 3) Wireless Network Evolution : 2G to 3G Vijay . K. Garg Pearson Education

Additional Reading:

- 1) Principles and Application of GSM Vijay Garg , Joseph . E. Wilkes Pearson Education
- 2) Mobile Cellular Telecommunications : Analog and Digital Systems , William C. Y. Lee, Tata McGraw – Hill Edition
- 3) Introduction to Wireless Telecommunication Systems and Networks- Gary . J. Mullet, DELMAR CENGAGE Learning
- 4) Wireless Communications and Networks : 3G and Beyond, ITI Saha Misra, Tata McGraw – Hill Edition
- 5) Fundamentals of Wireless Communication: David Tse, Pramod Viswanath, CAMBRIDGE University Press
- 6) Mobile Wireless communications, Mischa Schwartz, CAMBRIDGE University Press

BE, VII-VIII, Electronics, wef 2010-11

7) Wireless Communications : Andreas F. Molisch , Wiley Student Edition

Proposed Practical list

Hardware setups or simulation experiments on the following

- 1. OFDM (2 expts),
- 2. GSM (2 expts),
- 3. CDMA (2 expts),
- 4. One seminar per student on related latest technology in wireless systems (outside syllabus)

Term work:

Term work shall consist of minimum six experiments, Two Assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

University of Mumbai		
CLASS: B.E. (Electronics Engineering)	Semester – VII (Elective)	
SUBJECT: Advances in Biomedical Instrumentation (Elective)		

Periods per week		Lecture	4			
·		Practical	2			
(each of 60 min.)		Tutorial	-			
			Hours	ſ	Marks	
Evaluation	System	Theory Examination	3	1	100	
		Practical examination	-			
		Oral Examination	-		25	
		Term Work	-		25	
		Total		1	150	
Module	Content	8		<u> </u>	Hours	
Objective	Τοι	understand importance of u	pathological	and		
	diagn	ostic equipments in Medical	Electronics	. The		
	mater	ial and working of prosthetic a	nd intensive	e care		
	unit.	Different imaging techniques ir	n detail and	Drug		
	Delive	ery and Hospital Information S	ystem	0		
Pre-	Knowled	ge of generation of electri	cal signal	after		
requisite	studying	anatomy and physiology of I	numan bod [,]	y and		
	different	systems. Basic working	and desig	, in of		
	biomedic	al instruments.				
1	Basic pr	inciple of Photometry :			06	
	• Be	er Lambertz's Law,				
	• Pł	notoelectric Colorimeter				
	• Sr	pectrophotometer				
	● Fla	ame photometer				
	Autoanalyzer					
2	Blood Gas Analyzers: 08			08		
	Blood PO2. PCO2 and PH measurement:					
Complete Blood cel		Blood Gas Analyzer; I Counter :				
■ M		ethods of Cell counting-Coulter Counters;				
■ Ai		utomatic recognition and				
	 Di 	Differential counting of cells.				
3	Foetal Monitoring Instruments:			06		
	• Ca	ardiotocograph				
	• Fc	petal heart rate measurements				
	• Fc	petal scalp pH monitoring				
4	Orthotic	and Prosthetic Engg.			10	
	Definitior	n, Need and Classification				
Normal Human Locomotion – Gait Cvcle						
Biomaterials : Definition, Need and Classification						
Biological Testing and Biocompatibility						
	Upper and Lower limb Prosthetic devices					
	Upper ar	r and Lower limb Orthotic devices				
	Study of	dy of various biomaterials and applications				
Met		etallic Implants				
	• Co	omposites				
	• Ce	eramics				
	• Pc	blymers				
Heart Lu		ng Bypass machine and artificia	al heart valv	es		

5	Fundamentals of medical imaging:	10
	X-ray computed Tomography, Spiral or Helical C T: Slip	
	Ring Technology, C T Angiography. Clinical use &	
	Biological effects and safety, Magnetic resonance	
	imaging Biological effects and safety. Nuclear medical	
	imaging Biological effects and safety., Infrared imaging,	
	Liquid crystal thermography. Microwave thermography.	
	Endoscopy, gastroscope, bronchoscope, cystoscope,	
	colonoscope, Enteroscope Lithotripsy.	
6	Advances in Biomedical Systems:	08
	Introduction to Nanotechnology and its use in Drug	
	Delivery System,	
	Hospital Information system: Role of database in HIS.	
	Need of Networking in HIS. Overview of Networking,	
	topologies and its configuration. Structuring medical	
	record to carry out functions like admissions,	
	discharges, treatment history etc.	
	Computerization in pharmacy & billing. Automated clinical	
	laboratory systems & radiology information system.	
Text	Books:	
1	. Khandpur R. S., Handbook of Biomedical Instrumentation, Ta	ita
	McGraw Hill, second edition, 2003	
2	. Carr and Brown, Introduction to biomedical equipment te	echnology,
	fourth edition, Pearson press, 2003	

- 3. Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
- 4. W.R.Hendee & E.R.Ritenour, Medical Imaging Physics (3rd eds), Mosbey Year-Book, Inc., 1992.

Reference Books:

- 1. John G. Webster, Bioinstrumentation John Wiley and sons,2004
- 2. Joseph Bronzino (Editor-in-Chief), Handbook of Biomedical Engineering, CRC Press, 1995.
- 3. Neelina Malsch, Biomedical nanotechnology by CRC press release, Malsch TechnoValuation, Utrecht, The Netherlands
- 4. L.A.Geddes and L.E.Baker,"Principles of Applied Bio-Medical Instrumentation" John Wiley & Sons 1975.
- 5. Khandpur R S, Handbook of Analytical Instrumentation, Tata Mc Graw Hill
- Harold E. Smalley, "Hospital Management Engineering A guide to the improvement of hospital management system", PHI. C. A. Caceras ,"Clinical Engineering"

Proposed Practical list

Sr.no	Торіс	Title of Experiment
1	Basic principle of Photometry /Analyzer	Experiment based on any analyzer
2	Monitors	PH Meter
3		FHR (Foetus Heart Rate Monitor)
4	Orthotic and	Prosthetic Limb

5	Prosthetic Engg.	Heart Lung Machine or any other Prosthetic unit
6 7	Medical Imaging	Experiment to demonstrate imaging based on different Principles
8	HIS	Demonstration of S/W used for hospital Information System
	_	

Termwork:

The term-work shall consist of at least six laboratory experiments covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows,	
Laboratory work (Experiments and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part(a) from,
 - module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of

respective lecture hours as mentioned in the syllabus.

6. No question should be asked from pre-requisite module.

University of Mumbai						
CLASS: B.E. (Electronics Engineering) Semester – VII (Elective)						
SUBJECT: Elective - Microcomputer System Design						
Periods per week	Lecture	4				
	Practical	2				
(each of 60 min.)	Tutorial	I -				
	Hours	Marks				
Evaluation System	Theory Examination	3	100			

Practical /Oral examination		
Oral Examination	-	25
Term Work	-	25
Total		150

Module	Objectives: To understand the architecture and functioning of Pentium processor, its peripherals and interfacing.						
	Pre-requisite: Fundamentals of Microprocessor	-					
	Contents	Hours					
1	The Pentium Processor Detail discussion of Pentium architecture and functional units: super scalar architecture, dual pipe line, Integer pipeline stages, Floating point instruction stages, Overview of on chip code Maintaining coherency in on-chip cache MESI protocol Write once policy Study of Pentium signal interface, interface with various devices, misaligned data transfers data bus	08					
2	steering for 32, 16 and 8 bit devices The Pentium Processor Code cache organization, split line access Branch Prediction logic, Instruction pairing rules Data Cache organization, detail discussion with various situations of U and V pipeline accesses Burst bus cycles, cache line fills, single transfer cycles pipelined cycles, special cycles. Interrupt acknowledge bus cycle, bus cycle state machine, bus and bus state transition. System management mode Interrupts, reliability and error reporting	10					
3	Advanced features of Pentium II, Pentium Pro, Pentium IV Out of order execution, Advanced Branch Prediction, Hyper threading, On chip Level 2 cache, Trace cache.	06					
4	PCI bus : Introduction to local bus , Need for standard bus PCI signal interface: Functional grouping of signals, their role in transactions PCI Bus arbitration , Hidden Bus Arbitration , Bus Access Latency Situations when master or target dominates the bus PCI read write commands Interrupt handling in PCI, Interrupt Routing and Chaining Need for the configuration space and its usage	10					
5	Peripheral Bus Interfaces Basic hard disk structure IDE interface signals ,Timing Specifications, IDE	08					

	register model, IDE protocols, commands SCSI Bus hardware, Phases in transactions, Commands and protocols	
6	Universal Synchronous Bus(USB) :	06
	Introduction to USB, PC requirements, Bus topology, understanding the host and the	
	peripheral, the development process. USB transfer basics, Elements of a transfer, successful transfers. Transfer types, Control transfer, Bulk transfer, Interrupt transfer, Isochronous transfer, time critical transfers.	

Text Books:

- 1) Tom Shanley et al, Pentium Processor System Architecture, **Addison Wesley Press**
- 2) Tom Shanley et al, PCI System Architecture, Addison Wesley Pres
- 3) F. Schmidt, SCSI Bus and IDE Interface, Addison Wesley Press
- 4) Jan Axelson, USB Complete, Pentium Publication, Second Edition

Reference Books:

1) Tom Shanley et al, Protected Mode Architecture, Addison Wesley Press

Suggested Laboratory Experiments

Minimum six experiments on

- Use of CPUID instruction and identification of Processor
- Various uses of DOS interrupts
- PCI BIOS

And assignments /experiments covering other topics of syllabus

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum Six experiments, assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks. : 10 marks.

Test (at least one)

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

University of Mumbai								
CLASS: B.	- VII(Elective)							
	SUBJECT: Digital Image Processing							
Periods pe	r week	Lecture	04					
(each of 60	min.)	Tutorial	-					
			Hours	Marks				
Evaluation	System	Theory Examination	03	100				
		Practical examination						
		Oral Examination	-	25				
		Term Work	-	25				
		Total		150				
Pre- requisite	diverse fields are therefore possible. This first course in image processing shall teach basic concepts in the subject. Pre-requisite							
Module	Contents	6		Hours				
1	Digital Ir Introduct systems, sampling	4						
2	Image E	nhancement		8				
	Gray Level Transformations, Histogram Processing, Spatial Filtering, Smoothing and Sharpening Filters. Homomorphic Filtering Colour Image Enhancement.							
3	Image Se	egmentation		12				
	Detection Detection Laplacian Canny E Dilation	n of Discontinuities, Edge linkin n, Thresholding, Region based n of Gaussian, Derivative Edge Detection, Morphologica erosion, Opening & Cla	ng & Boundan segmentatic of Gaussian al operation osing, Bas	ry on n, :				

	Morphological Algorithm, Image representation schemes.	
4	Image Transform Discrete Fourier transform, Walsh transform(WT), Hadamard transform, Cosine transform, Haar transform, Wavelet transform,	8
5	Image Compression Fundamentals ,Lossless compression : RLE, Arithmetic Coding, Huffman Coding, ,Lossy compression : JPEG,MPEG, Subband Coding, Vector quantization, Image & Video compression standard.	10
6	Applications of Image Processing Case Study on Digital Watermarking, Biometric Authentication (Face, Finger Print, Signature Recognition), Vehicle Number Plate Detection and Recognition, Object Detection using Correlation Principle, Person Tracking using DWT, Handwritten and Printed Character Recognition, Contend Based Image Retrieval, Text Compression.	6

Text- Books:

- 1. Gonzalez & Woods, Digital Image Processing, Pearson Education, Second edition.
- 2. W. Pratt, Digital Image Processing, Wiley Publication, third edition, 2002.
- 3. S.Jayaraman Digital Image Processing TMH (Mc Graw Hill) publication
- 4. Milin Sonaka, Digital Image Processing and computer vision cengage learning, Thomson publication second edition.2007.
- 5. A.K. Jain, Fundamentals of Image processing, Prentice Hall of India Publication, 1995
- 6. Gonzalez & Woods, Digital Image Processing using MATLAB, Pearson Education

Reference Books:

1.Mc Andrew ,Introduction to Digital Image processing with Matlab cengage learning publication

2 Doubhcrty, Digital Image processing for medical application, Cambridge

Suggested List of Experiments :

List of experimental: using C/C++ or matlab or java Topic-1 : Image Enhancement [Any two Experiments]

- 1. To enhance image using Histogram Equalization
- 2. To enhance image using Contrast Stretching
- 3. To enhance image using spatial filtering
- 3. To perform Colour Image Enhancement

Topic-2: Image Segmentation [Any two Experiments]

- 1. To find edges using LOG and DOG
- 2. To find Edges using Prewit/ Sobel/ Fri-chen / Robert operators.
- 3. To find edges using canny Edge Detection.
- 4. To implement Morphological Operators

Topic-3 : Image Compression [Any Two Experiments]

- 1. To compress using Huffman coding
- 2. To compress DCT coefficient of Image
- 3. To compress Wavelet Coefficient of Image.
- 4. To compress Binary Image using Run Length Coding

Topic-4 : Application Development [Any Two Experiment]

- 1. Digital Watermarking
- 2. Biometric Authentication such as Face / Finger Print / Signature Recognition)
- 3. Vehicle Number Plate Detection and Recognition,
- 4. Object Detection using Correlation Principle,
- 5. Person Tracking using DWT,
- 6. Handwritten and Printed Character Recognition,
- 7. Contend Based Image Retrieval,
- 8. Morphological Toolkit Development
- 9. Human Expression Detection
- 10. Image Enhancement using Adaptive Histogram Equalization(AHE), Modified AHE(MAHE), Technique.
- 11. Image Compression using Vector Quantization
- 12. Image Compression using JPEG

Term Work:

The term work shall consist of at least six MATLAB Or C/C++ covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

1. Question paper will comprise of total 7 questions, each of 20 marks.

- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

B. E. Electronics Engineering				
Subject	– Project -I			
Project Hour: 4 Hrs/week	Term work: 25 marks Oral Exam. : 25 marks Total marks= 50 marks			
Note: One faculty will not guide more that group allotted to faculty the load is consid specified in time table of the faculty. Eac	n 3 projects in a semester. For every dered as 1 Hour per group per week, be h group will not have more than 4 students.			
Rationale: Project allows the student knowledge of Electronics engineerin	to work independently to put the g theory into practice.			
Detailed	description			
 Engineering Project is a technical Project is the conclusive effort semesters. The project course ch of topics and opportunities for inno Responsibility is placed on the engineering courses and to seek resources in terms of faculty, staff This course is an opportunity for skills while working in a team, created solutions and communication sh necessary to be a successful engine Introducing the concept of profest writing a technical document. Enhancing employability through the 	mandatory course. of independent work in the span of two allenges the student to explore wide range ovation. student to apply learning from various out and make the best use of the available f, library, laboratory, etc. students to further develop the managerial ative skills by developing novel engineering kills presenting their end application, all ineer. sional literature and Gaining experience in the evidence of independent work.			
The students of Electronics Engineer designing an engineering solution to the	ing are expected to build a project by any of the following:			
 Improvise existing technology Real life concern transport/healthcare/pollution/pop electricity, drainage, communication Develop mathematical models to fee Build dedicated or support a commercial/telephone/industrial/ second sec	s to improve basic ulation/security/utility services - water, gas, on etc /infrastructure, housing etc facilitate analysis and verifying the same applications for space/ military/medical scientific.			

To complete the project, students should describe a mathematical model, simulate, design, development, implementation or small research project in an area of specialization.

Note: Topics are given for student reference and students can explore beyond the topics specified under the guidance of project guide

Guidelines:

- Students should work under the guidance of any faculty member from the department.
- A faculty member must officially supervise all projects. Industry/ research Institute's supervisor (Qualified) may, under the direction of a faculty member, also supervise students. A faculty member is always responsible for the grading of every project.
- Group members should not be more than four
- Project is expected to be completed by end of VIII semester
- At the end of VII semester, students should submit synopsis summarizing the work done in VII semester. The objective of this activity is to achieve the following
 - Introduction/need/scope of the project
 - Clarity on the status of project and plan of action for VIII semester
 - Accumulation of the literature survey done (No un-authentic URL): The literature survey should be through standard Text book, References, Other publications of journals like-IEEE, Wiley Interscience, Springer, Elsevier or similar, of repute.
 - Procurement of Software/ Hardware needed for Installation/ Testing of projects in VIII semester
 - Corrective steps to be taken if any
- Students are expected to adopt systematic approach towards project completion
 - Each project should follow the scientific method and should apply the problem-solving approaches studied in earlier courses. In general, this includes: Gathering Information: A review of the state of the art should be made using the published literature as well as textbooks and student reports from previous projects if available.
 - Proper Planning: Students must define the project goals and must organize a logical sequence of steps to achieve these goals. This will vary depending on the project, ability to procure materials, availability of equipment, etc.
 - Regular Meetings: Students must meet regularly (weekly-4Hrs in VII Semester and 8 Hrs in VIII Semester) with the project guide.
 - Professional Record Keeping: Proper records are essential and are typically kept in a log book with all details of activity noted. Be sure to

use standard nomenclature and work in the SI system of units. (Logbook will contain in table format: Date/ Activity/ outcome/ comment on outcome/ Resources utilized/ Next meeting date, Target/ Guide's Remark)

Term work

Term work should consist of the above mentioned activities which shall be evaluated and shall carry a weightage of 25 marks.

Oral Examination

The oral examination shall be conducted on the basis on presentation given by the students and shall carry a weightage of 25 marks.

UNIVERSITY OF MUMBAI SCHEME OF INSTRUCTION AND EVALUATION (R2007) Programme: B.E. (ELECTRONICS ENGINEERING) SEMESTER: VII

		No. of perio	ods of 1Hour	Duration of		Ν	Iarks	
Sr. No	Subjects	Lecture	Practical	Theory Paper in Hours	Theory Paper	Term Work	Oral	Total
1	VLSI Design	4	2	3	100	25	25	150
2	Filter Design	4	2	3	100	25	25	150
3	Power Electronics and Drives	4	2	3	100	25	25	150
4	Communication Networks	4	2	3	100	25	25	150
5	Elective-II 5. Wireless communication 6. Advances in Biomedical Instrumentation 7. Micro computer system design 8. Digital Image Processing Design	4	2	3	100	25	25	150
6	Project -I					25	25	50
	TOTAL	20	10	15	500	150	150	800

SEMESTER: VIII

		No. of period	ds of 1Hour	Duration		Marks neory aper Term Work Oral Total 100 25 25 150 100 25 25 150		
Sr. No	Subjects	Lecture	Practical	of Theory Paper in Hours	Theory Paper	Term Work	Oral	Total
1	Advance VLSI Design	4	2	3	100	25	25	150
2	Robotics and Automation	4	2	3	100	25	25	150
3	Embedded Systems and Real- Time Programming	4	2	3	100	25	25	150

4	Elective-III 5. Advanced Networking Technologies 6. DSP Processors and architectures 7. Neural Networks & Fuzzy Systems 8. Electronics Product Design	4	2	3	100	25	25	150
5	Project -II					50	100	150
	TOTAL	16	08	12	400	150	200	750

University of Mumbai						
CLASS: B.E. (Electro	Semester	- VIII				
SUBJECT: Advanced VLSI Design						
Periods per week	Lecture	04				
-	Practical	02				
(each of 60 min.)	Tutorial	-				
		Hours	Marks			
Evaluation System	Theory Examination	3	100			
Practical examinatio						
	Oral Examination	-	25			
	Term Work	-	25			
	Total		150			

Module	Contents	Hours
Objective	To introduce advance design concepts, develop basic understanding of analog VLSI field and relate to issues occurring at chip level	-
Pre-requisite	VLSI Design, DSD I and II, BEC	-
1. Wire interconnect for circuit simulation	Interconnect parameters (Capacitance, Resistance and Inductance) their effect on circuit performance. Electrical wire models (ideal, lumped, lumped rc, distributed rc and transmission line), switching characteristics, transistor sizing, sizing routing conductors, charge sharing and reliability issues. (Numericals on each subtopic expected)	07
2. Sequential logic circuits design	Clocked systems (Single phase, Two phase and four phase clocking), recommended clocking approaches – clocked CMOS – Dynamic CMOS circuits – solutions for charge sharing - Implementation of general	09

	VLSI sequential system components such as Flip Flops, static as well as dynamic latches and Registers. Pipelining concepts	
3.Aritmetic Circuits in CMOS VLSI	Dynamic adders, Fast adders, Wide adders: Carry look ahead, Block generate and propagate, carry save, carry skip, carry save	06
4. Design of memories & programmable logic	CMOS Memory structures – SRAM and DRAM design –Sense amplifier design - Low power design techniques. ROM Arrays and Logic Arrays. EPROM, EEPROM, Flash cell working. Design of basic 6T SRAM Cell with read and write stability criteria	08
5. Timing issues & System Level Physical Design	Timing classification, Synchronous timing basics, clock skew, propagation delay estimation, clock jitter, combined clock skew and clock jitter estimation, synchronous and asynchronous design timing estimations. Clock generation and distribution Crosstalk, Interconnect Scaling, Floor planning & Routing, I/P & O/P Circuit, Power dissipation and consumption, Low power Design considerations.	09
6. Introduction to Analog and Mixed signal design	Building blocks for CMOS amplifiers, CMOS operational transconductance amplifiers. Frequency compensation schemes. Design of fully differential amplifiers, common mode feedback circuits, switched capacitor circuits. Design of sample and hold and comparator circuits.	09

Text books

1. John P. Uyemura, Introduction to VLSI Circuits and systems, John Wiley & sons.

- 2. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis
- & Design, Second Ed., MGH
- 3. Jan M Rabaey, Digital Integrated Circuits A Design Perspective, Prentice Hall
- 4. D.Razavi, Design of Analog CMOS circuits, McGraw Hill

Additional Reading

- 1. Neil H.E. Weste, Kamran Eshraghian, *Principles of CMOS VLSI Design: A system perspective*, Addison Wesley publication.
- 2. Fabricius, Eugene D, Introduction to VISI Design. TMH

3. P.R. Gray & R.G. Meyer, Analysis and design of analog integrated circuits, John Wiley

Proposed Practical list

B.E. Elect	ronics Engineering
VII-Seventh Semester (R2001) -Old	Equivalent VII-Seventh Semester (R2007)- Revised
1. Basics of VLSI	VLSI Design
2. Instrumentation Systems	Electronic Instrumentation Systems (TE, VI sem R-2007)
3. Digital Communication	Digital Communication and Coding Techniques (TE, V sem R-2007)
4. Filter Theory and Applications	Filter Design
5. Elective – I	
Wireless Communication	Wireless communication
Image Processing	Digital Image Processing Design
Microprocessor System Design	Micro computer system design
DSP Architecture	DSP Processors and architectures (VIII – R2007)
Process Control Instrumentation	No Equivalent*

* Student needs to appear in the same subject of R-2001

B.E. Elect	ronics Engineering
VIII-Eighth Semester (R2001) - Old	Equivalent VIII-Eighth Semester (R2007)- Revised
1. Power Electronics	Power Electronics and Drives(VII – R2007)
2. Data Communication & Networking	Communication Networks
3. Mechatronics	No Equivalent*
4. Elective – II	
VLSI Design	Advance VLSI Design
Robotics	Robotics and Automation
Telecom Network Management	No Equivalent*
Embedded System	Embedded Systems and Real-Time Programming
Advance DSP	No Equivalent*
Bio-medical Instrumentation	Advances in Biomedical Instrumentation

* Student needs to appear in the same subject of R-2001