û

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION, MUMBAI

SCHEME: G

TEACHING AND EXAMINATION SCHEME FOR POST S.S.C. DIPLOMA COURSES

COURSE NAME: DIPLOMA IN CHEMICAL ENGINEERING

COURSE CODE : CH

DURATION OF COURSE: 6 SEMESTERS WITH EFFECT FROM 2012-13

SEMESTER: THIRD DURATION: 16 WEEKS

PATTERN: FULL TIME - SEMESTER

1111	TERM TOLL TIME - SEMESTE	11								50	11121411	3.0				
a=			0	TE	ACHI	NG			EX	AMINA	TION S	СНЕМЕ	I.			
SR. NO	SUBJECT TITLE	Abbrev iation	SUB CODE	S	CHEM	E	PAPER	TH	(1)	PR	(4)	OR	(8)	TW	(9)	SW (17300)
110		idiloli	CODE	TH	TU	PR	HRS.	Max	Min	Max	Min	Max	Min	Max	Min	(17500)
1	Applied Mathematics \$	AMS	17301	03			03	100	40							
2	Industrial Chemistry	ICH	17312	04		02	03	100	40					25@	10	
3	Mechanical Operation	MOP	17313	04		04	03	100	40	50#	20		-	25@	10	5 0
4	Chemical Process Technology-I	CPT	17314	04		04	03	100	40	50#	20			50@	20	50
5	Stoichiometry	STO	17315	03	02		03	100	40							
6	Professional Practices-I	PPO	17019			03								50@	20	
			TOTAL	18	02	13		500		100				150		50

Student Contact Hours Per Week: 33 Hrs.

THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH.

Total Marks: 800

@ - Internal Assessment, # - External Assessment, No Theory Examination, \$ - Common to all branches.

Abbreviations: TH-Theory, TU-Tutorial, PR-Practical, OR-Oral, TW-Term Work, SW-Sessional Work

- Conduct two class tests each of 25 marks for each theory subject. Sum of the total test marks of all subjects is to be converted out of 50 marks as sessional work (SW).
- > Progressive evaluation is to be done by subject teacher as per the prevailing curriculum implementation and assessment norms.
- Code number for TH, PR, OR, TW are to be given as suffix 1, 4, 8, 9 respectively to the subject code.

w.e.f Academic Year 2012-13 'G' Scheme

Course Name: All Branches of Diploma in Engineering & Technology

Course Code: AE/CE/CH/CM/CO/CR/CS/CW/DE/EE/EP/IF/EJ/EN/ET/EV/EX/IC/IE/IS/

ME/MU/PG/PT/PS/CD/CV/ED/EI/FE/IU/MH/MI

Semester: Third

Subject Title: Applied Mathematics

Subject Code: 17301

Teaching and Examination Scheme:

Teac	ching Sch	neme			Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03			03	100				100

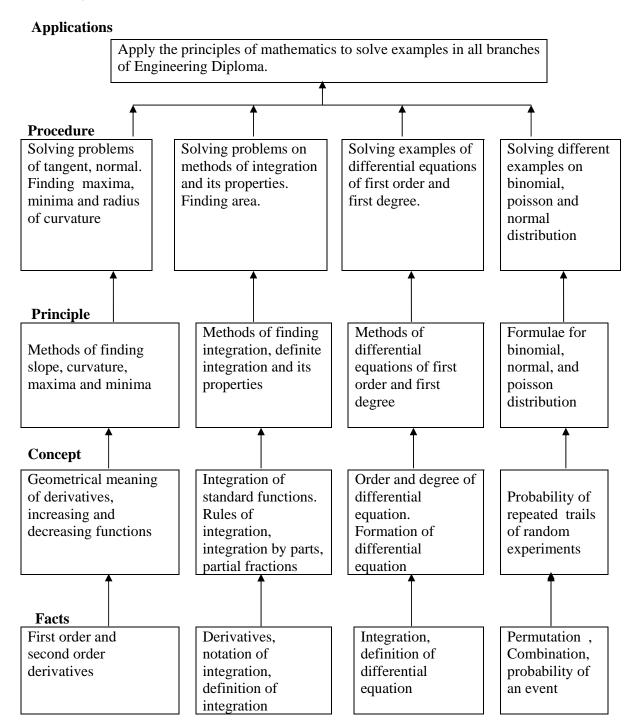
NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Applied mathematics is designed for its applications in engineering and technology. It includes the topics integration, differential equation, probability distribution. The connection between applied mathematics and its applications in real life can be understood and appreciated.


Derivatives are useful to find slope of the curve, maxima and minima of function, radius of curvature. Integral calculus helps in finding the area. In analog to digital converter and modulation system integration is important. Differential equation is used in finding curve. Probability is used in Metrology and quality control.

The fundamentals of this topic are directly useful in understanding engineering applications in various fields.

General Objectives:

Students will be able to:

- 1. Apply derivatives to find slope, maxima, minima and radius of curvature.
- 2. Apply integral calculus to solve different engineering problems.
- 3. Apply the concept of integration for finding area.
- 4. Apply differential equation for solving problems in different engineering fields.
- 5. Apply the knowledge of probability to solve the examples related to the production process.

Theory:

Topic and Contents	Hours	Marks
Topic-1 Applications of Derivative Specific objectives: ➤ Find slope, curvature, maximum and minimum value of functions		
 related to different engineering applications. Examples for finding slope, equations of tangent and normal to the curve Maxima and minima. Radius of curvature. 	06	16
Topic-2 Integral Calculus	_	
2.1 Integration 20 Specific objectives:		
 Integrate function using different method. Definition of integration as anti derivative, rules of integration. Integration of standard functions Methods of integration Integration by substitution. Integration by partial fractions. Integration by parts and generalized rule by parts. 	14	
 2.2 Definite Integrals Specific objectives: Solve problems on definite integrals using the properties. Definite integral- Definition, examples. Properties of definite integrals without proof and simple examples. 	08	44
2.3 Application of Definite Integrals Specific objectives: Find area. • Area under a curve. • Area between two curves.	04	
Topic 3 - Differential Equation.		
 3.1 Differential equation Specific objectives: Solve the differential equation of first order and first degree Solve different engineering problems using differential equation Differential equation- Definition, order and degree of a differential equation. Formation of differential equation containing single constant. Solution of differential equation of first order and first degree for following types Variable separable form, Equation reducible to variable separable form. Linear differential equation. Homogeneous differential equation. Exact differential equation. 	10	20

Topic 4 - Probability		
4.1 Probability		
Specific objectives: 08		
Solve different engineering problems related to probability process.		
 Definition of random experiment, sample space, event, 	02	
occurrence of event and types of event (impossible, mutually	02	
exclusive, exhaustive, equally likely)		20
 Definition of probability, addition and multiplication theorems of 		20
probability.		
4.2 Probability Distribution 12		
Binomial distribution	04	
Poisson's Distribution	04	
Normal distribution		
Total	48	100

Learning Resources: 1) Books:

Sr. No	Title	Authors	Publication
1	Mathematic for Polytechnic	S. P. Deshpande	Pune Vidyarthi Girha Prakashan' Pune
2	Calculus : Single Variable	Robert. T. Smith	Tata McGraw Hill
3	Higher Engineering mathematics	B. V Ramana	Tata McGraw Hill
4	Higher Engineering mathematics	H. K. Dass	S .Chand Publication
5	Higher Engineering Mathematics	B. S. Grewal	Khanna Publication, New Delhi
6	Applied Mathematics	P. N. Wartikar	Pune Vidyarthi Griha Prakashan, pune

2) Websites:

i) www.khan academy

Course Name: Diploma in Chemical Engineering

Course Code: CH

Semester: Third

Subject Title: Industrial Chemistry

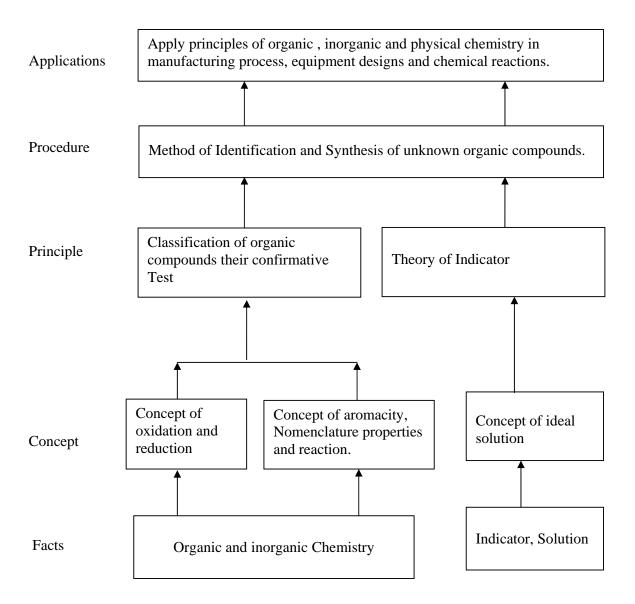
Subject Code: 17312

Teaching and Examination Scheme:

Teac	ching Sch	neme			Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
04		02	03	100			25@	125

NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.


> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

This subject will cover knowledge of basic organic compounds. Methods of preparation of organic compound. Identify the properties of various organic compounds & uses of organic compounds. Properties of inorganic compounds. Subject gives guideline of solutions & indicators.

General Objective: Student will be able to

- 1. Understand identification of organic and inorganic compounds.
- 2. Know technique of handling glass ware.
- 3. Understand method of balancing reaction equation.
- 4. Understand purpose of different types of solution.
- 5. Use procedure for determination of properties of inorganic compound.

Theory:

Topics and Contents	Hours	Marks
1. Chemistry of organic compounds		
Specific objective		
> Classify organic compound based on structure		
> State the rules of Nomenclature		
Contents:		
Define organic and inorganic Chemistry		
Importance of organic chemistry		
Classification of organic compounds,		
- Based on structure (aliphatic compound, closed chain compound,	08	16
unsaturated compounds)		
- Based on functional group.		
General characteristics of organic compounds - Isomerism,		
polymerization, solubility, melting point, odour, combustibility		
Functional group.		
Homologous series.		
Nomenclature of organic compounds.(common name, Derived name,		
IUPAC name)		
2. Alkanes, Alkenes, Alkynes & Cycloalkanes		
Specific objective		
> Describe given specific method of preparation for		
organic compound		
> State the physical properties of given organic compound		
> State the chemical reactions on given organic compound		
Alkanes (08)		
Structural formula, Nomenclature, Classification of Alkanes		
General methods of preparation		
By Hydrogenation of Alkanes, Alkynes,		
By reduction of alkyl Halides,		
By Wurtz coupling reaction,		
By decarboxylation of carboxylic acids.		
 Physical property of alkanes 		
 Chemical property of Alkanes 		
Halogenations of Alkanes ,Nitration, Sulphonation, Combustion of	20	26
Alkanes, Dehydrogenation,	20	26
pyrolysis.		
Uses of Alkanes.		
• Uses of Alkanes.		
Alkenes (06)		
Alkenes, structural formula, Nomenclature, IUPAC system,		
Methods of preparation		
By dehydration of alcohols		
By dehydrogenation of Alkyl halides		
By dehydrogenation of vicinal dehalides.		
 Physical property of Alkenes. 		
• • • •		
Chemical property of Alkenes. Addition of hydrogen helegens helegen saids.		
Addition of hydrogen, halogens ,halogen acids		
Water, oxidation with ozone. Polymerization.		
Uses of alkenes.	<u> </u>	

17312 CH3

Alkynes (06)		
 Alkynes, structural formula, Nomenclature, IUPAC system, 		
 Methods of preparation. 		
From calcium carbide,		
From vicinal geminaldihalides.		
From tetra halides,		
 Physical property of Alkynes. 		
 Chemical property of Alkynes. 		
Addition of Halogens, halogen acids, sulphuric acids		
Water, ozonolysis.		
 Uses of alkynes 		
Cycleollyanes (06)		
Cycloalkanes (06)		
Nomenclature, structural formula.		
Method of preparation. Plant of G 1 1 11		
Physical property of Cycloalkanes.		
Chemical property of Cycloalkanes. Chemical property of Cycloalkanes.		
Stability of cycloalkanes, Baeyer's strain theory,		
drawback of Baeyer's strain theory & modification of Baeyer's strain		
theory.		
3. Aromatic compound Specific objective		
 Describe given specific method of preparation for Aromatic 		
Hydrocarbons.		
 State Chemical reaction on given Aromatic Hydrocarbons 		
3.1 Aromatic compounds and its homologues. (12)		
Nomenclature, structural formula.		
 Examples of aromatic compound, 		
 Types of Aromatic Compounds. 		
 Difference between aliphatic & aromatic Compounds. 		
 General methods of preparation of benzene & its Homologues. 		
 By heating an aromatic acid or its sodium salt with soda lime. 		
- By hydrolysis of sulphuric acid with super heated steam.	20	26
- By action of alkyl halides on benzene.	20	20
- By heating halogen derivatives of benzene wartz fitting reaction.		
 Physical property of Alkynes 		
 Chemical properties of benzene its homologues. 		
Combustion, Nitration, Sulphonation, Oxidation, Reduction, Ozonide		
formation, Halogenation, Fiedal craft's reaction, Mercuration.		
 Uses of aromatic compound. 		
3.2 Phenols (10)		
 Types of aromatic hydroxy compounds. 		
 Preparation of monohydric phenols, physical properties of phenols. 		
 Chemical properties of phenois. 		
Uses of phenols.		
4. Alcohol Chemistry		
Specific objective		
 Describe given specific method of preparation for Alcohol. 		
 State Chemical reaction on Alcohol. 	08	16
 State classification of Alcohol. 		
 Introduction of alcohols, classification of alcohols. 		
		I

			1
	Nomenclature of alcohols		
•	General method of preparation.		
-	From alkyl halides.		
-	From alkenes.		
-	From aldehydes and ketones		
	by reduction and by using Grignard reagent.		
•	Physical properties of alcohols.		
•	Chemical properties of alcohols.		
-	Action of sodium or potassium.		
_	Reaction with hydrogen halides.		
-	Action of phosphorus halides.		
-	Reaction involving both Alkyl Group and Hydroxyl Group Dehydration.		
•	Uses of alcohols.		
5. Solu	utions & Indicators		
Specif	ïc objective		
>	State the theories of acid- base indicator.		
>	State the theory of indicators.		
>	Types of solutions.		
Soluti	ons		
•	Introduction, Defination of solution, types of solution Vapor pressure of		
	liquid, Lowering vapor pressure.		
•	Raoult;s law for a solution of non-volatile solution, The p-x diagram for		
	an ideal mixture of two liquids,	08	16
•	Ideal solution and non ideal solution, type of ideal solution azotropic		
	mixtures.		
Indica	ntors		
•	Indicators, titration, acid base indicators. Hydrogen-ion indicators,		
•	Theories of acid base indicator.		
	Oswald's theory		
	1. Action of phenolphthalein,		
	2. Action of methyl orange.		
	The Quinonoid Theory		
	Total	64	100

Practical:

Skills to be developed:

Intellectual Skills:

- 1) Analysis of a given solution
- 2) To interpret the confirmative test

Motor Skills:-

- 1) Observe chemical reactions
- 2) Observation readings like boiling point and melting point
- 3) Handle the apparatus carefully

List of Practical:-

To analyze given organic compounds by qualitative analysis

- 1) Benzoic acid
- 2) Acetic acid
- 3) Aniline

- 4) Benzaldehyde
- 5) Chloroform
- 6) Napthylene
- 7) Chlorobenzene
- 8) Alpha or Bata napthelene
- 9) Urea
- 10) Thiourea
- 11) Nitrobenzene

Learning Resources:

Sr. No	Author	Title	Publisher
01	Morrison and Boyd	Organic Chemistry	Allyn and Bacon Universal Bookstall, Boston.
02	Bahl & Bahl	Organic Chemistry	S Chand and Company
03	Bhupinder Mehta Manju Mehta	Organic Chemistry	PHI learning private limited
04	I & II by Finar	Organic Chemistry	
05	M Gopala Rao	Dryden Outline of Chemical Technology	East West Publishers 1997, New Delhi.

Reference: en.wikipedia.org/wiki/organic-compound-03k en.wikipedia.org/wiki/organic-chemistry-72-k http://en.wikipedia.org/wiki/physical-chemistry-28k **Course Name: Diploma in Chemical Engineering**

Course code : CH

Semester

Subject Title: Mechanical Operation

: Third

Subject Code: 17313

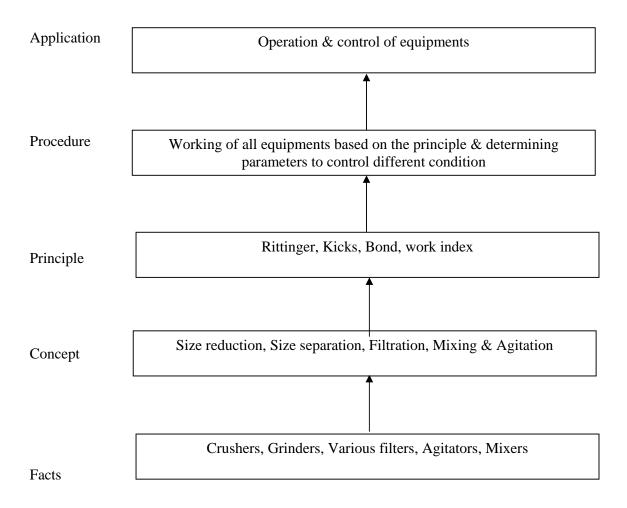
Teaching and Examination Scheme:

Teac	Teaching Scheme Examination Scheme							
TH	TU	PR	PAPER HRS.	TH	PR	OR	TW	TOTAL
04		04	03	100	50#	-	25@	175

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:


All types of chemical industries require operations like size reduction, size separation and filtration. Different types of machinery are required to carry out such process.

Unit operations and relevant machinery for the same is covered under mechanical operations. Knowledge of this content will be useful in operation and control of these machineries in chemical industry.

General Objectives:

Students will be able to

- 1. Know the various size reduction & separation equipments, its construction & working.
- 2. Understand working of equipment
- 3. Handle various equipment related to size reduction and size separation
- 4. Select various types of agitators, mixers

Theory:

Topic and Content	Hours	Marks
Chapter 1: Size Reduction of Solids		
Specific Objectives: Describe the construction & working of size reduction equipment Calculate power required for given size reduction operation		
Contents: 1.1 (04 marks)		
Concept of size reduction, Importance of size reduction.		
 Energy & Power requirement for size reduction equipments - Rittinger's law, Kick's law, Bond law, Work index, crushing efficiency, simple problems 		
1.2 Crushers & Grinders (10 marks)		
 Classification of size reduction equipments, primary crushers, secondary crushers, grinders, cutters Primary crushers: Jaw crusher 	14	20
 Secondary crushers – Gyratory crusher, Roll crushers Grinders – Hammer mill, Ball mill 		
Ultrafine Grinders : Fluid energy mill,		
Open circuit & closed circuit grinding		
• Principle, construction, working and application of the above equipments 1.3 (6 marks)		
Selection of crushing rolls & derivation of angle of nip. Simple problems		
Derivation of critical speed of ball mill. Simple problems		
Chapter 2: Size Separation of Solids		
Specific Objectives:		
 Describe construction and working of specified screening equipments. Determine effectiveness of screen 		
Contents: 2.1 (04 marks)		
Concept & Importance of screening operation		
• Classification of screens on the basis of performance (Ideal & Actual screen)		
 Types of standard screen series – Tyler standard screen series, Indian standard screen series 	08	16
 Types of screen analysis – Differential analysis, cumulative analysis. 2.2 Effectiveness & capacity of screens – Definition, Derivation of effectiveness. Problems based on it. (06 marks) 		
• factors affecting the performance of screen – Method of feed, screen surface, Moisture content, Vibration, Screen slope		
2.3 Types of screening equipments (06 marks)		
a) Grizzlies b) Trommal & Trommal arrangements		
b) Trommel & Trommel arrangementsc) Gyrotary screen		
d) Shaking & vibrating screen		
Chapter 3: Separation of Solid Based on Specific Properties		
Specific Objectives:	12	16
> Describe different types of classifier		

Know Separation of solids by using specific properties.		
Contents:		
3.1 Types of size separation based on Density, Specific gravity & surface properties of the materials (10 marks)		
1. Classification –		
Gravity Settling Tank		
• Cone Classifier		
Double Cone Classifier		
Rake Classifier		
• Spiral Classifier		
3.2 Separation solid particles from liquid and gas by Cyclone separator		
3.3 Jigging		
3.4 Froth floatation		
3.5 Separation of solid particles based on electrical & magnetic properties		
(06 marks)		
Electrostatic separator		
 Separation of solid particles based on Magnetic properties 		
Magnetic head and pulley separator		
Magnetic Drum separator		
Ball-Norton type separator		
Chapter 4: Filtration		
Specific Objectives:		
> Describe the various filtration techniques		
Describe construction and working of various types of filter Contents:		
4.1 Concept of filtration and Types of filtration (10 marks)		
Cake filtration and deep bed filtration		
Constant Rate & Constant pressure filtration		
Derivation based on it for batch filter	14	20
4.2 Factors affecting the rate of filtration e.g. pressure drop, viscosity, area of		
filtering surface, Resistance of cake & filter medium.		
4.2 Types of filtration equipments (10 marks)		
a) Primary filter – Sand filter (pressure sand filter and rapid sand filter)		
b) Pressure filters – Plate & frame filter press (Washing type & Non washing		
type) c) Vacuum filter – Rotary drum filter		
d) Centrifugal filter – Basket centrifuge		
Chapter 5: Sedimentation		
Specific Objectives:		
 Describe gravity settling techniques. 		
 Know the types of thickeners used in industry 		
Contents:		
5.1 Concept & Principle of sedimentation (06 marks)		
Types of settling		
Free settling, Hindered settling	08	12
Concept of terminal settling velocity		
Difference between		
Sedimentation & Filtration		
Sedimentation & Fluation Sedimentation & Classification		
Sedimentation & Classification Sedimentation & Centrifugation		
5.2 Laboratory batch sedimentation test & setting velocity curve (Graph)		

Total	64	100
d) Muller mixer		
c) Banbury mixer		
b) Ribbon blender		
a) Sigma mixer		
Principle, construction, working & applications		
6.2 Types of mixers (08 marks)		
vortex formation.		
• Concept of swirling & vortex & methods of prevention of swirling &		
Flow patterns in agitated vessels in baffled tank & unbaffled tank		
1) propeller 2) Turbine 3) paddles	08	16
Construction and flow patterns of following impellers		
Importance of mixing & agitation		
concept of mixing, homogeneous & heterogeneous mixtures		
6.1 (08 marks)		
Contents:		
➤ Identify flow patterns in mixing and agitation		
Describe homogenous & heterogeneous mixtures		
Specific Objectives:		
Chapter 6: Mixing		
Role of coagulant in filtration & sedimentation		
Types of thickner- Batch thickner, continuous thickner (bridge supported)		
(06 marks)		

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Interpretation of result of size reduction and separation.
- 2. Calculating efficiency, particle size distribution etc.

Motor Skills:

- 1. Handling & operating size reduction equipments
- 2. Handling of vaccum pump, sedimentation, filtration, mixer
- 3. Plot the graphs

List of Practicals:

- 1. To determine the particle size distribution of material obtained from Jaw crusher.
- 2. To determine the particle size distribution of material obtained from pulvariser (Hammer mill).
- 3. To determine the average particle size by changing the residence time of material in ball mill.
- 4. To find effectiveness of screen by using any screening equipment.
- 5. To find efficiency of froth floatation cell.

- 6. Draw the rate of filtration curve by using plate and frame filter press
- 7. To draw rate of filtration curve using vacuum filter.
- 8. To carry out batch sedimentation test using different concentration of calcium carbonate slurry & find terminal settling velocity.
- 9. To find out solid-solid mixing index by Ribbon Blender/ Sigma Mixer.
- 10. To separate the given slurry using centrifuge and to determine percentage of solids recovered.

Learning Resources:

1. Books:

Sr. No.	Title	Authors	Publications
01	Unit operations of Chemical Engineering	Mccabe W. L. Smith Harrior	McGraw-Hill international - 1993
02	Chemical Engineering	J. M. Coulson J. F. Richardson J. K. Backhurst & J. H. Harker Vol 2	Pergamon Press 1993
03	Mechanical Operations	Anup K. Swain, Hemlata Patra, G. K.Roy	McGraw Hill Publication

2. Websites: www.crushingsolutions.com

Course Name: Diploma in Chemical Engineering

Course Code: CH

Semester : Third

Subject Title: Chemical Process Technology-I

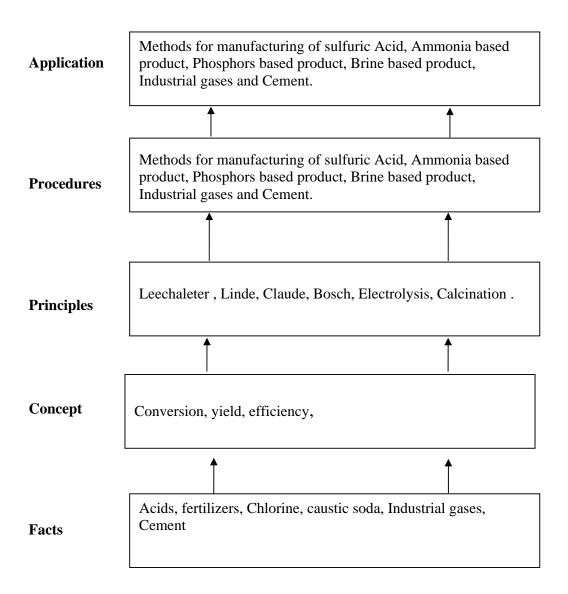
Subject Code: 17314

Teaching and Examination Scheme:

Teac	hing Sch	neme	Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
04		04	03	100	50#		50@	200

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).


Rationale:

This subject will give knowledge to the students about manufacturing of various chemicals in Industries and role of the parameters like temperature, pressure, concentration and catalyst in the process.

Objective:

The students will be able to

- 1. Draw different types of flow and block diagram used in process Industries.
- 2. To understand the roll of reaction parameters in the process.
- 3. To know the uses of various chemical product manufacture in Industries.
- 4. Know safety precautions in chemical plants.

Theory

Chapter	Topic and Contents	Hours	Marks
•	Manufacturing of Sulfuric Acid :		
	Specific Objective		
	Advantages of Contact process		
1	Physico-chemical principles.	04	08
1	Contents:	04	00
	1.1 Contact process (DCDA)		
	Raw materials, Reaction, Major engineering problems, Process		
	flow diagram, uses.		
	Manufacturing of Nitrogenous chemicals		
	Specific Objectives		
	State Le Chatlier Principle		
	Importance of mixed fertilizer		
	Contents: Raw material, Reaction, Process flow diagram, Process		
	description & uses-	14	22
2	Ammonia,	14	
	Nitric Acid,		
	• Urea		
	Ammonium Sulphate		
	Ammonium Nitrate		
	Ammonium Phosphate		
	Manufacturing Process of Phosphorous Chemicals		
	Specific Objectives		
	 Distinguish between yellow and Red phosphorus 		
	Compare between single and Triple super phosphate		
	State leaching		
	Contents:		
	3.1		
	Manufacturing of Phosphorus		
	Raw material, Reaction, Process flow diagram, Electro		
3	thermal, Electric arc process, Uses	16	20
3	Manufacturing of Phosphoric Acid	10	20
	Raw material, Reaction, Process flow diagram, Uses		
	3.2		
	Manufacturing of Single Super Phosphate		
	Raw material, Reaction, Process flow diagram, Uses,		
	pollution control		
	Manufacturing of Triple Super Phosphate		
	Raw material, Reaction, Process flow diagram, Uses		
	Manufacturing of Phosphorous Tri and Penta Chloride		
	Raw material, Reaction, Block diagram, Uses		
	Chlor-alkali Industries		
	Specific Objectives		
	Definition of Electrolysis		
4	Define calcinations	14	20
-	Principle of absorption		
	Contents:		
	4.1 12Marks		
	Manufacturing of Chlorine and Caustic soda		

Raw material, Diaphragm cell, Mercury cell, Cell reaction, Process flow diagram, Uses • Manufacturing of Hydrochloric Acid Raw material, Reaction, Synthesis Process, Salt and Sulfuric Acid Process, Process flow diagram, Uses 4.2 08Marks Manufacturing of Soda Ash, Raw material, Reaction, Process flow diagram, Function of Ammonization and Carbonating tower, Uses Manufacturing of Industrial Gases Specific Objectives • State Linde and Claude's Principles Contents: 5.1 10Marks • Manufacturing of Oxygen and Nitrogen. Raw materials, Principle of Linde and Claude's Process, Block diagram, Separation process • Manufacturing of Hydrogen by natural gas Raw material, Reaction, Process flow diagram, Uses • Manufacturing of Water gas Raw material, Reaction, Block diagram, Uses 5.2 10Marks • Manufacturing of Producer Gas Raw material, Reaction, Block diagram, Uses • Manufacturing of Carbon dioxide Raw material, Reaction, Manufacturing by flue gases, Process flow diagram, Uses • Manufacturing of Acetylene Raw material, Reaction, Manufacturing by calcium carbide, Process flow diagram, Uses • Manufacturing of Cement & other products Specific Objectives • Define calcinations • Define hardening and settling of cement • Describe types of cement Contents: • Manufacturing of Gypsum Raw material, Reaction, Block diagram, Uses • Plaster of Paris-Raw material, Block diagram, Uses • Manufacturing of Cement-Types, contents, theory of hardening and settling, raw material, wet and dry process, process flow diagram, pollution control		Total	64	100
Process flow diagram, Uses Manufacturing of Hydrochloric Acid Raw material, Reaction, Synthesis Process, Salt and Sulfuric Acid Process, Process flow diagram, Uses 4.2 08Marks Manufacturing of Soda Ash, Raw material, Reaction, Process flow diagram, Function of Ammonization and Carbonating tower, Uses Manufacturing of Industrial Gases Specific Objectives State Linde and Claude's Principles Contents: 5.1 10Marks Manufacturing of Oxygen and Nitrogen. Raw materials, Principle of Linde and Claude's Process, Block diagram, Separation process Manufacturing of Hydrogen by natural gas Raw material, Reaction, Process flow diagram, Uses Manufacturing of Water gas Raw material, Reaction, Block diagram, Uses Manufacturing of Producer Gas Raw material, Reaction, Block diagram, Uses Manufacturing of Carbon dioxide Raw material, Reaction, Manufacturing by flue gases, Process flow diagram, Uses Manufacturing of Acetylene Raw material, Reaction, Manufacturing by calcium carbide, Process flow diagram, Uses	6	 Specific Objectives Define calcinations Define hardening and settling of cement Describe types of cement Contents: Manufacturing of Gypsum Raw material, Reaction, Block diagram, Uses Plaster of Paris-Raw material, Block diagram, Uses Manufacturing of Cement-Types, contents, theory of hardening and settling, raw material, wet and dry process, process flow diagram, pollution control 		
Process flow diagram, Uses • Manufacturing of Hydrochloric Acid Raw material, Reaction, Synthesis Process, Salt and Sulfuric Acid Process, Process flow diagram, Uses 4.2 08Marks Manufacturing of Soda Ash, Raw material, Reaction, Process flow diagram, Function of	5	Manufacturing of Industrial Gases Specific Objectives • State Linde and Claude's Principles Contents: 5.1 10Marks • Manufacturing of Oxygen and Nitrogen. Raw materials, Principle of Linde and Claude's Process, Block diagram, Separation process • Manufacturing of Hydrogen by natural gas Raw material, Reaction, Process flow diagram, Uses • Manufacturing of Water gas Raw material, Reaction, Block diagram, Uses 5.2 10Marks • Manufacturing of Producer Gas Raw material, Reaction, Block diagram, Uses • Manufacturing of Carbon dioxide Raw material, Reaction, Manufacturing by flue gases, Process flow diagram, Uses • Manufacturing of Acetylene Raw material, Reaction, Manufacturing by calcium carbide, Process flow diagram, Uses	10	20
D		 Manufacturing of Hydrochloric Acid Raw material, Reaction, Synthesis Process, Salt and Sulfuric Acid Process, Process flow diagram, Uses 4.2 08Marks Manufacturing of Soda Ash, Raw material, Reaction, Process flow diagram, Function of 		

Practical:

Intellectual Skills

- 1. Analyze given solution
- 2. Interpret the purity of solution.

Motor Skills

1. Measure the purity of solution.

- 2. Handle the apparatus and chemicals carefully.
- 3. Observe chemical Reaction.

Lists of Practicals:

- 1. To find percentage purity of commercial Nitric Acid.
- 2. To find Nitrogen content in Fertilizer (Ammonium Fertilizer)
- 3. To find % purity of Sulphuric Acid
- 4. To find Ammonia Content in Ammonium sulphate/ Ammonium Phosphate.
- 5. To find percentage purity of commercial Hydrochloric acid
- 6. To find percentage purity of Caustic Soda.
- 7. Analysis of cement
- 8. Analysis of soda ash (Percentage Purity)
- 9. Analysis of Potassium Permanganate
- 10. Analysis of Hydrogen peroxide.
- 11. Analysis of bleaching powder

Mini Project:

Comparison of different grades of cement

Prepare Material Safety Data Sheet (MSDS) on H2SO4, HNO3, Caustic soda, Chlorine.

Electroplating of a given metal.

Learning Resources:

Books:

Sr. No.	Author	Name of the Book	Publisher
1	M. Gopal Rao and Marshal Sitting	Dryden's outlines of Chemical Technology	East West
2	George Austin	Shreve's Chemical Process Industries	McGraw Hill
3	P. H. Groggins	Chemical process of Organic Synethesis	McGraw Hill

Course Name: Diploma in Chemical Engineering

Course Code : CH
Semester : Third

Subject Title: Stoichiometry

Subject Code: 17315

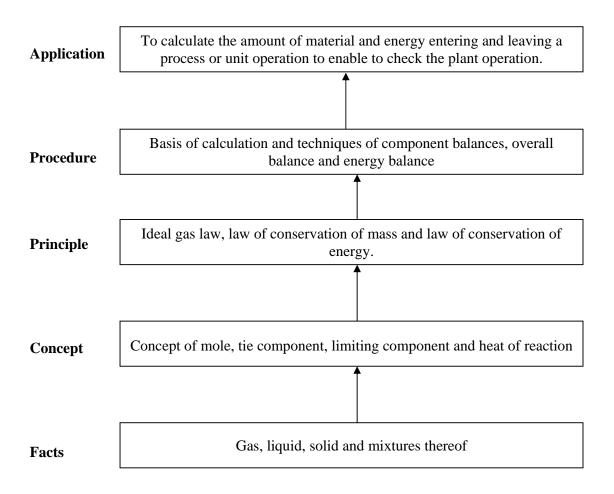
Teaching and Examination Scheme:

Teac	ching Sch	neme	Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03	02		03	100				100

NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).


Rationale:

Chemical engineering is all about transformation of species of material by a chemical process and the subject stoichiometry (chemical process calculations) forms one of the core subjects of the course. It mainly deals with the qualitative and quantitative aspects of material and energy transformations during a chemical process, the knowledge of which is very essential in the design of chemical reactors, equipments and the chemical process as a whole.

General Objectives:

This subject will enable students to

- 1. Perform material balance over a given operations and process to calculate the quantity and composition of input and output streams from the process/operation.
- 2. Calculate the heat effects associated with a chemical reaction and unit operation.
- 3. Estimate material and energy requirements in a chemical process.

Theory Content:

Topic and Contents	Hours	Marks
Topic 1: Gases, Gas mixtures & Gas liquid mixtures.		
Specific Objectives:		
State and explain specified gas laws.		
Find the average molecular wt. and density of a gas mixture.		
Contents:		
1.1	10	18
 Ideal gas law, Dalton's law, Amagat's law, 	10	10
• Vander Waals equation of state (only concept and equation, no		
problems)		
• Avg. molecular wt. of a gas mixture, density of a gas mixture,		
composition of gas a mixture		
1.2 Raoult's law, Henry's law – statement and simple problems		
Topics 2: Material balances without chemical reactions		
Specific Objectives:		
Describe the procedure of solving material balance problems.		
Calculate quantity and/or composition of entering or leaving stream of an operation.		
Contents:		
2.1 04 Marks		
• Law of conservation of mass.		
 Definition & block diagram of various unit operations such as drying, 	15	32
evaporation, crystallization, extraction, distillation, absorption,	10	02
filtration, etc.		
2.2 Solving material balance problem in distillation, drying, evaporation		
operations 16 Marks		
2.3 Solving material balance problem in crystallization, extraction, absortion,		
filtration, mixing & blending. Recycling & bypassing operations		
12 Marks		
(Note: No problems on recycling & bypass operations)		
Topic 3: Material Balance with chemical reactions		
Specific Objectives:		
➤ Identifying limiting and excess components		
➤ Know about the procedure of solving material balance problems		
without chemical reactions		
> Calculate % conversion, %yield, %excess, raw material		
requirements, etc. Contents:		
3.1 Definition & terms 04Marks	13	32
Stoichiometric equation, stoichiometric co-efficient, stoichiometric	13	32
ratio.		
 Limiting component, excess component, conversion, yield, selectivity 		
& w excess		
3.2 Solving material balance problems with chemical reactions for calculating		
% conversion, %yield, %excess, of raw materials or products.		
16 Marks		
3.3 Solving material balance problems with fuels & combustion reaction for		

calculating percent excess air 12 Marks		
Topic 4: Energy Balance		
Specific Objectives:		
Calculate standard heat of reaction using heat of formation & heat of combustion data.		
Calculate the heat effects associated with a chemical reaction.		
Contents:		
4.1		
• Law of conservation of energy, different forms of energy, heat/thermal energy & its units.		
• Sensible heat, latent heat, specific heat, heat capacity, heat capacity at		
constant volume, and at constant pressure, variation of heat capacity	10	18
with temp. Equation for calculating the sensible heat requirement using		
heat capacity data.		
4.2 Standard states for gas, liquid & solid. Heat of formation, heat of		
combustion, heat of reaction, Hess's law of constant heat summation and		
its application. Heat of dilution & dissolution.		
• Effect of temp. on heat of reaction, relationship for calculating the heat		
of reaction at any temp. Heat effects associated with chemical		
reactions (endothermic and exothermic).		
Adiabatic operations, adiabatic reaction & adiabatic reaction temp.		
(only definitions)		
Total	48	100

List of Assignments (Tutorial):

Assignments	Hours
1. Problems on Ideal Gas Law	03
2. Problems on average molecular weight, density and composition of a gas mixture.	03
3. Material balance problems on drying, extraction.	02
4. Material balance problems on distillation, absorption.	03
5. Material balance problem on mixing, evaporation.	02
6. Material balance problems on filtration, crystallization.	02
7. Material balance problem with Chemical Reactions for calculating % excess, % conversion, % yield.	04
8. Material balance problems with Chemical Reaction for calculating % composition of feed/ product stream on mole basis and weight basis.	04
9. Sensible heat transfer calculations using heat capacity data.	02
10. Heat of formation of a compound using Hess law.	02
11. Calculate the standard heat of reaction using heat of formation and heat of combustion data.	01
12. Calculate the heat transferred using latent heat data, specific heat data.	02
13. Calculate the heat effects associated with a chemical reaction.	02
Total	32

Learning Resources:

Books:

Sr. No.	Author	Title	Publisher
1	Stoichiometry	Bhatt. B. I & Vora. S. M	Tata Mc Graw Hill Publication, New Delhi
2	Basic principle & calculations in chemical engineering	David M, Himmelblau & Riggs	Prentice Hall of India Pvt. Ltd., New Delhi
3	Chemical Process Principles	Hougen & Watson	Wiley Estern Ltd., New Delhi

w.e.f Academic Year 2012-13 'G' Scheme

Course Name: Diploma in Chemical Engineering

Course Code: CH

Semester: Third

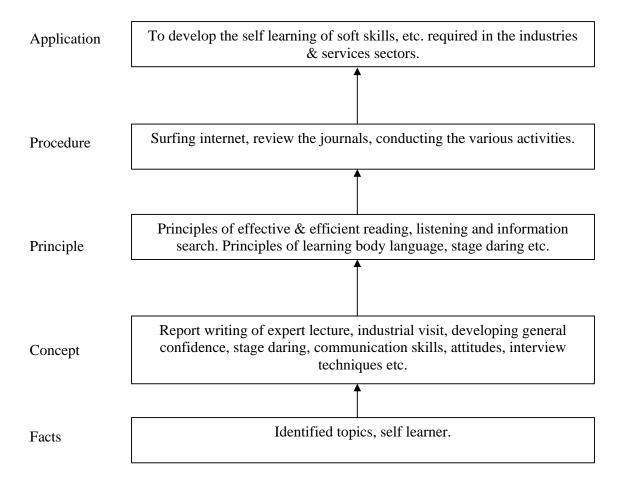
Subject Title : Professional Practices-I

Subject Code: 17019

Teaching and Examination Scheme:

Teaching Scheme			Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
		03		1		1	50@	50

Rationale:


Most of the diploma holders in industries lack in soft skills such as communication skills, interview techniques, personality developments etc. The selection for the job of diploma holders is based on competitive tests, interviews and/or group discussions. Therefore while selecting candidates a normal practice adopted is to see general confidence, ability to communicate and their attitude, in addition to basic technological concepts.

The purpose of introducing professional practices is to provide opportunity to students to undergo the activities which will enable to develop the skills through industrial visits, expert lecturers, seminars, group discussions.

General Objectives

Student will be able to:

- 1. Acquire information from different sources.
- 2. Prepare notes for given topic.
- 3. Present given topic in a seminars.
- 4. Present given topic in group discussion.
- 5. Interact with peers to share thoughts.
- 6. Prepare a report on industrial visits, expert lectures.

Guidelines for implementing professional practices

- In order to implement contents of professional practice effectively it is necessary for the
 department to plan the activities for full semester. Minor modifications may be done if
 required. Following are guidelines for the same.
- Activities to be guided and monitored by the faculty of the concerned department only.
- Involve students in related activities to a great extent to develop learning to learn skills.
- Arrange industrial visits and expert lectures on convenient days. Periods of PP may be allocated to concerned faculty members whose periods may be lost.

Ensure to carry out all activities suggested.

Contents: Theory

Sr. No.	Activities	Hours
01	Industrial Visits: Industrial visits to be arranged and report of the same should be submitted by individual student as a part of term work. Visit any two chemical industries available in surrounding areas. Relevant Content of report: Name of industry, industry profile, history, organisation structure, application of products, raw materials & its sources, reactions unit operation	12
02	Expert Lectures: Minimum two expert lectures based on chemical engg. field to be arranged for the students and the report to be prepared and submitted by individual student as a part of term work. Selection for topics for expert lectures to be related with fundamental of chemical engineering, mechanical operations, chemical technologies etc. Some of the suggested topics are: i. Scope for chemical engineers. ii. Scenario types & nature of chemical industries. iii. Recent developments in chemical industries. iv. Any other topics.	08
03	Seminar / Paper Presentation: Students should present a paper or a seminar on a given topic related with the learning relevant subjects, topics for seminar may be selected from following chemical journals i. Chemical product finder ii. Chemical weekly iii. Chemical industry digest etc. The report should be written and submitted in advance in a specific format of seminar and presented for 6 to 8 min. with question & answer session for 2 to 3 min. by each individual student. Major weightage is to be given for this activity.	14
04	Group Discussion: Student should discuss in a group of six to eight and to be monitored by faculty member. The student should write a brief report on the same and submit as a part of term work. Some of the suggested topic are: i. Current topics related to chemical industry. ii. Application of computer in chemical engineering field. iii. Safety in Chemical industries iv. Any other topics	08
05	Collection of materials / products / processes: The students group of 3 to 4 will perform any one of the following activities. i. Collect samples of five basic fertilizers. ii. Collect minimum three samples of mixed fertilizers, micronutrients, organic fertilizers etc. iii. Collect five organic/inorganic chemicals. The report should content the uses, manufacturer's name, packaging, properties, etc. with samples, it is to be submitted as a part of term work.	06